Darboux--Moutard transformations and Poincar\'e--Steklov operators
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Topology and physics, Tome 302 (2018), pp. 334-342.

Voir la notice de l'article provenant de la source Math-Net.Ru

Formulas relating Poincaré–Steklov operators for Schrödinger equations related by Darboux–Moutard transformations are derived. They can be used for testing algorithms of reconstruction of the potential from measurements at the boundary.
@article{TM_2018_302_a15,
     author = {R. G. Novikov and I. A. Taimanov},
     title = {Darboux--Moutard transformations and {Poincar\'e--Steklov} operators},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {334--342},
     publisher = {mathdoc},
     volume = {302},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2018_302_a15/}
}
TY  - JOUR
AU  - R. G. Novikov
AU  - I. A. Taimanov
TI  - Darboux--Moutard transformations and Poincar\'e--Steklov operators
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2018
SP  - 334
EP  - 342
VL  - 302
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2018_302_a15/
LA  - ru
ID  - TM_2018_302_a15
ER  - 
%0 Journal Article
%A R. G. Novikov
%A I. A. Taimanov
%T Darboux--Moutard transformations and Poincar\'e--Steklov operators
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2018
%P 334-342
%V 302
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2018_302_a15/
%G ru
%F TM_2018_302_a15
R. G. Novikov; I. A. Taimanov. Darboux--Moutard transformations and Poincar\'e--Steklov operators. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Topology and physics, Tome 302 (2018), pp. 334-342. http://geodesic.mathdoc.fr/item/TM_2018_302_a15/

[1] Adilkhanov A. N., Taimanov I. A., “On numerical study of the discrete spectrum of a two-dimensional Schrödinger operator with soliton potential”, Commun. Nonlinear Sci. Numer. Simul., 42 (2017), 83–92 | DOI | MR

[2] Crum M. M., “Associated Sturm–Liouville systems”, Q. J. Math., 6 (1955), 121–127 | DOI | MR

[3] Darboux G., “Sur une proposition relative aux équations linéaires”, C. r. Acad. sci. Paris., 94 (1882), 1456–1459

[4] B. A. Dubrovin, I. M. Kričever, S. P. Novikov, “The Schrödinger equation in a periodic field and Riemann surfaces”, Sov. Math., Dokl., 17 (1976), 947–951 | MR

[5] P. G. Grinevich, R. G. Novikov, “Generalized analytic functions, Moutard-type transforms, and holomorphic maps”, Funct. Anal. Appl., 50:2 (2016), 150–152 | DOI | DOI | MR

[6] Grinevich P. G., Novikov R. G., “Moutard transform approach to generalized analytic functions with contour poles”, Bull. sci. math., 140:6 (2016), 638–656 | DOI | MR

[7] Grinevich P. G., Novikov R. G., “Moutard transform for generalized analytic functions”, J. Geom. Anal., 26:4 (2016), 2984–2995 | DOI | MR

[8] Grinevich P. G., Novikov R. G., Moutard transform for the conductivity equation, 2018, arXiv: 1801.00295 [math-ph] | MR

[9] P. G. Grinevich, S. P. Novikov, “Two-dimensional ‘inverse scattering problem’ for negative energies and generalized-analytic functions. I: Energies below the ground state”, Funct. Anal. Appl., 22:1 (1988), 19–27 | DOI | MR

[10] Hu H.-C., Lou S.-Y., Liu Q.-P., “Darboux transformation and variable separation approach: the Nizhnik–Novikov–Veselov equation”, Chin. Phys. Lett., 20:9 (2003), 1413–1415 | DOI

[11] R. M. Matuev, I. A. Taimanov, “The Moutard transformation of two-dimensional Dirac operators and the conformal geometry of surfaces in four-dimensional space”, Math. Notes, 100:6 (2016), 835–846 | DOI | DOI | MR

[12] Matveev V. B., “Darboux transformations, covariance theorems and integrable systems”, L. D. Faddeev's seminar on mathematical physics, AMS Transl. Ser. 2, 201, Amer. Math. Soc., Providence, RI, 2000, 179–209 | MR

[13] Matveev V. B., Salle M. A., Darboux transformations and solitons, Springer, Berlin, 1991 | MR

[14] Moutard Th., “Sur la construction des équations de la forme $\frac {1}{z}\frac {d^2 z}{dx dy} = \lambda (x,y)$, qui admettent une intégrale générale explicite”, J. Éc. Polytech., 28 (1878), 1–11

[15] R. G. Novikov, I. A. Taimanov, “The Moutard transformation and two-dimensional multipoint delta-type potentials”, Russ. Math. Surv., 68:5 (2013), 957–959 | DOI | DOI | MR

[16] R. G. Novikov, I. A. Taimanov, “Moutard type transformation for matrix generalized analytic functions and gauge transformations”, Russ. Math. Surv., 71:5 (2016), 970–972 | DOI | DOI | MR

[17] R. G. Novikov, I. A. Taimanov, S. P. Tsarev, “Two-dimensional von Neumann–Wigner potentials with a multiple positive eigenvalue”, Funct. Anal. Appl., 48:4 (2014), 295–297 | DOI | DOI | MR

[18] I. A. Taimanov, “The Moutard transformation of two-dimensional Dirac operators and Möbius geometry”, Math. Notes, 97:1 (2015), 124–135 | DOI | DOI | MR

[19] I. A. Taimanov, “A fast decaying solution to the modified Novikov–Veselov equation with a one-point singularity”, Dokl. Math., 91:1 (2015), 35–36 | DOI | MR

[20] I. A. Taimanov, “Blowing up solutions of the modified Novikov–Veselov equation and minimal surfaces”, Theor. Math. Phys., 182:2 (2015), 173–181 | DOI | DOI | MR

[21] I. A. Taimanov, S. P. Tsarev, “Two-dimensional Schrödinger operators with fast decaying potential and multidimensional $L_2$-kernel”, Russ. Math. Surv., 62:3 (2007), 631–633 | DOI | DOI | MR

[22] I. A. Taimanov, S. P. Tsarev, “Blowing up solutions of the Novikov–Veselov equation”, Dokl. Math., 77:3 (2008), 467–468 | DOI | MR

[23] I. A. Taimanov, S. P. Tsarev, “Two-dimensional rational solitons and their blowup via the Moutard transformation”, Theor. Math. Phys., 157:2 (2008), 1525–1541 | DOI | DOI | MR

[24] I. A. Taimanov, S. P. Tsarev, “On the Moutard transformation and its applications to spectral theory and soliton equations”, J. Math. Sci., 170:3 (2010), 371–387 | DOI | MR

[25] I. A. Taimanov, S. P. Tsarev, “Faddeev eigenfunctions for two-dimensional Schrödinger operators via the Moutard transformation”, Theor. Math. Phys., 176:3 (2013), 1176–1183 | DOI | DOI | MR

[26] A. P. Veselov, S. P. Novikov, “Finite-zone, two-dimensional, potential Schrödinger operators. Explicit formulas and evolution equations”, Sov. Math., Dokl., 30 (1984), 588–591 | MR | MR

[27] A. P. Veselov, S. P. Novikov, “Finite-zone, two-dimensional Schrödinger operators. Potential operators”, Sov. Math., Dokl., 30 (1984), 705–708 | MR

[28] Yu D., Liu Q. P., Wang S., “Darboux transformation for the modified Veselov–Novikov equation”, J. Phys. A: Math. Gen., 35:16 (2002), 3779–3785 | DOI | MR