Polynomial Lie algebras and growth of their finitely generated Lie subalgebras
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Topology and physics, Tome 302 (2018), pp. 316-333.

Voir la notice de l'article provenant de la source Math-Net.Ru

The concept of polynomial Lie algebra of finite rank was introduced by V. M. Buchstaber in his studies of new relationships between hyperelliptic functions and the theory of integrable systems. In this paper we prove the following theorem: the Lie subalgebra generated by the frame of a polynomial Lie algebra of finite rank has at most polynomial growth. In addition, important examples of polynomial Lie algebras of countable rank are considered in the paper. Such Lie algebras arise in the study of certain hyperbolic partial differential equations, as well as in the construction of self-similar infinite-dimensional Lie algebras (such as the Fibonacci algebra).
Keywords: free module, polynomial vector field, Lie–Rinehart algebra, current algebra, loop algebra, growth of a Lie algebra, grading.
Mots-clés : polynomial algebra
@article{TM_2018_302_a14,
     author = {D. V. Millionshchikov},
     title = {Polynomial {Lie} algebras and growth of their finitely generated {Lie} subalgebras},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {316--333},
     publisher = {mathdoc},
     volume = {302},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2018_302_a14/}
}
TY  - JOUR
AU  - D. V. Millionshchikov
TI  - Polynomial Lie algebras and growth of their finitely generated Lie subalgebras
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2018
SP  - 316
EP  - 333
VL  - 302
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2018_302_a14/
LA  - ru
ID  - TM_2018_302_a14
ER  - 
%0 Journal Article
%A D. V. Millionshchikov
%T Polynomial Lie algebras and growth of their finitely generated Lie subalgebras
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2018
%P 316-333
%V 302
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2018_302_a14/
%G ru
%F TM_2018_302_a14
D. V. Millionshchikov. Polynomial Lie algebras and growth of their finitely generated Lie subalgebras. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Topology and physics, Tome 302 (2018), pp. 316-333. http://geodesic.mathdoc.fr/item/TM_2018_302_a14/

[1] V. M. Buchstaber, “Polynomial dynamical systems and the Korteweg–de Vries equation”, Proc. Steklov Inst. Math., 294 (2016), 176–200 | DOI | MR

[2] V. M. Buchstaber, “Polynomial Lie algebras and the Zelmanov–Shalev theorem”, Russ. Math. Surv., 72:6 (2017), 1168–1170 | DOI | DOI | MR

[3] V. M. Buchstaber and D. V. Leykin, “Polynomial Lie algebras”, Funct. Anal. Appl., 36 (2002), 267–280 | DOI | DOI | MR

[4] V. G. Kac, “Simple irreducible graded Lie algebras of finite growth”, Math. USSR, Izv., 2:6 (1968), 1271–1311 | DOI | MR

[5] Krause G. R., Lenagan T. H., Growth of algebras and Gelfand–Kirillov dimension, Amer. Math. Soc., Providence, RI, 2000 | MR

[6] A. N. Leznov, V. G. Smirnov, A. B. Shabat, “The group of internal symmetries and the conditions of integrability of two-dimensional dynamical systems”, Theor. Math. Phys., 51:1 (1982), 322–330 | DOI | MR | MR

[7] Mathieu O., “Classification of simple graded Lie algebras of finite growth”, Invent. math., 108 (1992), 455–519 | DOI | MR

[8] Millionschikov D. V., “Graded filiform Lie algebras and symplectic nilmanifolds”, Geometry, topology, and mathematical physics, S. P. Novikov's seminar 2002–2003, AMS Transl. Ser. 2, 212, Amer. Math. Soc., Providence, RI, 2004, 259–279 | MR

[9] D. V. Millionshchikov, “Characteristic Lie algebras of the sinh-Gordon and Tzitzeica equations”, Russ. Math. Surv., 72:6 (2017), 1174–1176 | DOI | DOI | MR

[10] Millionshchikov D., “Lie Algebras of Slow Growth and Klein–Gordon PDE”, Algebr. Represent. Theory, 21:5 (2018), 1037–1069 | DOI | MR

[11] Petrogradsky V. M., “Examples of self-iterating Lie algebras”, J. Algebra, 302:2 (2006), 881–886 | DOI | MR

[12] Rinehart G. S., “Differential forms on general commutative algebras”, Trans. Amer. Math. Soc., 108 (1963), 195–222 | DOI | MR

[13] Smith M. K., “Universal enveloping algebras with subexponential but not polynomially bounded growth”, Proc. Amer. Math. Soc., 60 (1976), 22–24 | DOI | MR

[14] A. V. Zhiber, R. D. Murtazina, I. T. Habibullin, A. B. Shabat, “Characteristic Lie rings and integrable models in mathematical physics”, Ufa Math. J., 4:3 (2012), 17–85 | MR