Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2018_302_a1, author = {Anton A. Ayzenberg}, title = {Torus actions of complexity 1 and their local properties}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {23--40}, publisher = {mathdoc}, volume = {302}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2018_302_a1/} }
Anton A. Ayzenberg. Torus actions of complexity 1 and their local properties. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Topology and physics, Tome 302 (2018), pp. 23-40. http://geodesic.mathdoc.fr/item/TM_2018_302_a1/
[1] Ayzenberg A., “Topological model for $h''$ vectors of simplicial manifolds”, Bol. Soc. Mat. Mex. Ser. 3, 23:1 (2017), 413–421, arXiv: 1502.05499 [math.AT] | DOI | MR
[2] Ayzenberg A., Space of isospectral periodic tridiagonal matrices, 2018, arXiv: 1803.11433 [math.AT]
[3] Bialynicki-Birula A., “Some theorems on actions of algebraic groups”, Ann. Math. Ser. 2, 98:3 (1973), 480–497 | DOI | MR
[4] Bredon G. E., Introduction to compact transformation groups, Pure Appl. Math., 46, Acad. Press, New York, 1972 | MR
[5] Buchstaber V. M., Panov T. E., Toric topology, Math. Surv. Monogr., 204, Am. Math. Soc., Providence, RI, 2015 | DOI | MR
[6] Buchstaber V. M., Ray N., “An invitation to toric topology: Vertex four of a remarkable tetrahedron”, Toric topology, Int. Conf. (Osaka, 2006), Contemp. Math., 460, Amer. Math. Soc., Providence, RI, 2008, 1–27 | DOI | MR
[7] Buchstaber V. M., Terzić S., “$(2n,k)$-manifolds and applications”, Okounkov bodies and applications, Abstr. Workshop (May 25–31, 2014), Oberwolfach Rep., 11, no. 2, 2014, 1459–1513 | DOI | MR
[8] Buchstaber V. M., Terzić S., “Topology and geometry of the canonical action of $T^4$ on the complex Grassmannian $G_{4,2}$ and the complex projective space $\mathbb CP^5$”, Moscow Math. J., 16:2 (2016), 237–273, arXiv: 1410.2482 [math.AT] | MR
[9] Buchstaber V. M., Terzić S., Toric topology of the complex Grassmann manifolds, 2018, arXiv: 1802.06449 [math.AT]
[10] Church Ph. T., Lamotke K., “Almost free actions on manifolds”, Bull. Aust. Math. Soc., 10 (1974), 177–196 | DOI | MR
[11] Davis M. W., Januszkiewicz T., “Convex polytopes, Coxeter orbifolds and torus actions”, Duke Math. J., 62:2 (1991), 417–451 | DOI | MR
[12] Fintushel R., “Classification of circle actions on 4-manifolds”, Trans. Amer. Math. Soc., 242 (1978), 377–390 | MR
[13] Goresky M., Kottwitz R., MacPherson R., “Equivariant cohomology, Koszul duality, and the localization theorem”, Invent. math., 131:1 (1998), 25–83 | DOI | MR
[14] Karshon Y., Tolman S., “Classification of Hamiltonian torus actions with two-dimensional quotients”, Geom. Topol., 18:2 (2014), 669–716, arXiv: 1109.6873 [math.SG] | DOI | MR
[15] Karshon Y., Tolman S., Topology of complexity one quotients, Talk at the Int. Conf. “Algebraic Topology, Combinatorics, and Mathematical Physics” on occasion of V. Buchstaber's 75th birthday (Moscow, May 2018) http://www.mathnet.ru/present20512
[16] Masuda M., Panov T., “On the cohomology of torus manifolds”, Osaka J. Math., 43:3 (2006), 711–746, arXiv: math/0306100 [math.AT] | MR
[17] Orlik P., Raymond F., “Actions of the torus on 4-manifolds. I”, Trans. Amer. Math. Soc., 152 (1970), 531–559 | MR
[18] Orlik P., Raymond F., “Actions of the torus on 4-manifolds. II”, Topology, 13 (1974), 89–112 | DOI | MR
[19] D. A. Timashëv, “$G$-varieties of complexity 1”, Russ. Math. Surv., 51:3 (1996), 567–568 | DOI | DOI | MR
[20] D. A. Timashev, “Classification of $G$-varieties of complexity 1”, Izv. Math., 61:2 (1997), 363–397 | DOI | DOI | MR
[21] È. B. Vinberg, “Discrete linear groups generated by reflections”, Izv. Math., 5:5 (1971), 1083–1119 | DOI | MR
[22] Yoshida T., “Local torus actions modeled on the standard representation”, Adv. Math., 227:5 (2011), 1914–1955, arXiv: 0710.2166 [math.GT] | DOI | MR