Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2018_302_a0, author = {Simonetta Abenda and Petr G. Grinevich}, title = {Real soliton lattices of the {Kadomtsev--Petviashvili} {II} equation and desingularization of spectral curves: the $\mathrm {Gr^{ \scriptscriptstyle TP}}(2,4)$ case}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {7--22}, publisher = {mathdoc}, volume = {302}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2018_302_a0/} }
TY - JOUR AU - Simonetta Abenda AU - Petr G. Grinevich TI - Real soliton lattices of the Kadomtsev--Petviashvili II equation and desingularization of spectral curves: the $\mathrm {Gr^{ \scriptscriptstyle TP}}(2,4)$ case JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2018 SP - 7 EP - 22 VL - 302 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2018_302_a0/ LA - ru ID - TM_2018_302_a0 ER -
%0 Journal Article %A Simonetta Abenda %A Petr G. Grinevich %T Real soliton lattices of the Kadomtsev--Petviashvili II equation and desingularization of spectral curves: the $\mathrm {Gr^{ \scriptscriptstyle TP}}(2,4)$ case %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2018 %P 7-22 %V 302 %I mathdoc %U http://geodesic.mathdoc.fr/item/TM_2018_302_a0/ %G ru %F TM_2018_302_a0
Simonetta Abenda; Petr G. Grinevich. Real soliton lattices of the Kadomtsev--Petviashvili II equation and desingularization of spectral curves: the $\mathrm {Gr^{ \scriptscriptstyle TP}}(2,4)$ case. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Topology and physics, Tome 302 (2018), pp. 7-22. http://geodesic.mathdoc.fr/item/TM_2018_302_a0/
[1] Abenda S., “On a family of KP multi-line solitons associated to rational degenerations of real hyperelliptic curves and to the finite non-periodic Toda hierarchy”, J. Geom. Phys., 119 (2017), 112–138 | DOI | MR
[2] Abenda S., “On some properties of KP-II soliton divisors in $Gr^{\mathrm {TP}}(2,4)$”, Ric. Mat., 2018 | DOI
[3] Abenda S., Grinevich P. G., “Rational degenerations of $\mathtt M$-curves, totally positive Grassmannians and KP2-solitons”, Commun. Math. Phys., 361:3 (2018), 1029–1081, arXiv: 1506.00563 [nlin.SI] | DOI | MR
[4] Abenda S., Grinevich P. G., KP theory, plane-bipartite networks in the disk, and rational degenerations of $\mathtt M$-curves, 2018, arXiv: 1801.00208 [math-ph] | MR
[5] Abenda S., Grinevich P. G., Reducible $M$-curves for Le-networks in the totally-nonnegative Grassmannian and KP-II multiline solitons, 2018, arXiv: 1805.05641 [math-ph]
[6] Arbarello E., Cornalba M., Griffiths P. A., Geometry of algebraic curves, With a contribution by J. D. Harris, v. II, Grundl. Math. Wiss., 268, Springer, Heidelberg, 2011 | MR
[7] Arkani-Hamed N., Bourjaily J., Cachazo F., Goncharov A., Postnikov A., Trnka J., Grassmannian geometry of scattering amplitudes, Cambridge Univ. Press, Cambridge, 2016 | MR
[8] Belokolos E. D., Bobenko A. I., Enol'skii V. Z., Its A. R., Matveev V. B., Algebro-geometric approach to nonlinear integrable equations, Springer Ser. Nonlinear Dyn., Springer, Berlin, 1994
[9] Bobenko A. I., Bordag L. A., “Periodic multiphase solutions of the Kadomtsev–Petviashvili equation”, J. Phys. A.: Math. Gen., 22:9 (1989), 1259–1274 | DOI | MR
[10] Boiti M., Pempinelli F., Pogrebkov A. K., Prinari B., “Towards an inverse scattering theory for non-decaying potentials of the heat equation”, Inverse Probl., 17:4 (2001), 937–957 | DOI | MR
[11] Buchstaber V. M., Glutsyuk A. A., Total positivity, Grassmannian and modified Bessel functions, 2017, arXiv: 1708.02154 [math.DS]
[12] Buchstaber V. M., Terzić S., “Topology and geometry of the canonical action of $T^4$ on the complex Grassmannian $G_{4,2}$ and the complex projective space $\mathbb C P^5$”, Moscow Math. J., 16:2 (2016), 237–273 | MR
[13] Buchstaber V. M., Terzić S., Toric topology of the complex Grassmann manifolds, 2018, arXiv: 1802.06449 [math.AT]
[14] Chakravarty S., Kodama Y., “Soliton solutions of the KP equation and application to shallow water waves”, Stud. Appl. Math., 123:1 (2009), 83–151 | DOI | MR
[15] A. I. Bobenko, C. Klein (eds.), Computational approach to Riemann surfaces, Lect. Notes Math., 2013, Springer, Heidelberg, 2011 | DOI | MR
[16] Deconinck B., Heil M., Bobenko A., van Hoeij M., Schmies M., “Computing Riemann theta functions”, Math. Comput., 73:247 (2004), 1417–1442 | DOI | MR
[17] Deconinck B., van Hoeij M., “Computing Riemann matrices of algebraic curves”, Physica D, 152–153 (2001), 28–46 | DOI | MR
[18] Deconinck B., Segur H., “The KP equation with quasiperiodic initial data”, Physica D, 123:1–4 (1998), 123–152 | DOI | MR
[19] V. S. Dryuma, “Analytic solution of the two-dimensional Korteweg–de Vries (KdV) equation”, JETP Lett., 19:12 (1974), 387–388
[20] B. A. Dubrovin, “Theta functions and non-linear equations”, Russ. Math. Surv., 36:2 (1981), 11–92 | DOI | MR
[21] Dubrovin B. A., Flickinger R., Segur H., “Three-phase solutions of the Kadomtsev–Petviashvili equation”, Stud. Appl. Math., 99:2 (1997), 137–203 | DOI | MR
[22] B. A. Dubrovin, I. M. Krichever, S. P. Novikov, “Integrable systems. I”, Dynamical Systems IV: Symplectic Geometry and Its Applications, Encycl. Math. Sci., 4, 2nd ed., Springer, Berlin, 2001, 177–332 | MR | MR
[23] B. A. Dubrovin, S. M. Natanzon, “Real theta-function solutions of the Kadomtsev–Petviashvili equation”, Math. USSR, Izv., 32:2 (1989), 269–288 | DOI | MR | MR
[24] Fomin S., Zelevinsky A., “Cluster algebras. I: Foundations”, J. Amer. Math. Soc., 15:2 (2002), 497–529 | DOI | MR
[25] Frauendiener J., Klein C., “Computational approach to compact Riemann surfaces”, Nonlinearity, 30:1 (2017), 138–172 | DOI | MR
[26] F. R. Gantmacher, M. G. Krein, Oscillation Matrices and Kernels and Small Vibrations of Mechanical Systems, rev. ed., AMS Chelsea Publ., Providence, RI, 2002 | MR | MR
[27] Griffiths P., Harris J., Principles of algebraic geometry, J. Wiley Sons, New York, 1978 ; Griffits F., Kharris Dzh., Printsipy algebraicheskoi geometrii, v. 1, 2, Mir, M., 1982 | MR | MR
[28] D. A. Gudkov, “The topology of real projective algebraic varieties”, Russ. Math. Surv., 29:4 (1974), 1–79 | DOI | MR
[29] Harnack A., “Ueber die Vieltheiligkeit der ebenen algebraischen Curven”, Math. Ann., 10 (1876), 189–198 | DOI | MR
[30] A. R. Its, V. B. Matveev, “On a class of solutions of the Korteweg–de Vries equation”, Differential Equations. Spectral Theory. Wave Propagation Theory, Problems of Mathematical Physics, 8, Leningr. Univ., L., 1976, 70–92 (in Russian)
[31] B. B. Kadomtsev, V. I. Petviashvili, “On the stability of solitary waves in weakly dispersing media”, Sov. Phys., Dokl., 15 (1970), 539–541
[32] Kalla C., Klein C., “On the numerical evaluation of algebro-geometric solutions to integrable equations”, Nonlinearity, 25:3 (2012), 569–596 | DOI | MR
[33] Kalla C., Klein C., “Computation of the topological type of a real Riemann surface”, Math. Comput., 83:288 (2014), 1823–1846 | DOI | MR
[34] Karlin S., Total positivity, v. 1, Stanford Univ. Press, Stanford, CA, 1968 | MR
[35] Kodama Y., Williams L., “The Deodhar decomposition of the Grassmannian and the regularity of KP solitons”, Adv. Math., 244 (2013), 979–1032 | DOI | MR
[36] Kodama Y., Williams L., “KP solitons and total positivity for the Grassmannian”, Invent. math., 198:3 (2014), 637–699 | DOI | MR
[37] I. M. Kričever, “Algebro-geometric construction of the Zaharov–Šabat equations and their periodic solutions”, Sov. Math., Dokl., 17 (1976), 394–397 | MR
[38] I. M. Krichever, “Integration of nonlinear equations by the methods of algebraic geometry”, Funct. Anal. Appl., 11:1 (1977), 12–26 | DOI | MR
[39] I. M. Krichever, “Spectral theory of finite-zone nonstationary Schrödinger operators. A nonstationary Peierls model”, Funct. Anal. Appl., 20:3 (1986), 203–214 | DOI | MR
[40] Lusztig G., “Total positivity in reductive groups”, Lie theory and geometry: In honor of B. Kostant, Prog. Math., 123, Birkhäuser, Boston, 1994, 531–568 | MR
[41] Lusztig G., “Total positivity in partial flag manifolds”, Represent. Theory, 2 (1998), 70–78 | DOI | MR
[42] T. M. Malanyuk, “A class of exact solutions of the Kadomtsev–Petviashvili equation”, Russ. Math. Surv., 46:3 (1991), 225–227 | DOI | MR
[43] Matveev V. B., “Some comments on the rational solutions of the Zakharov–Schabat equations”, Lett. Math. Phys., 3 (1979), 503–512 | DOI | MR
[44] Mumford D., Tata Lectures on Theta, v. I, II, Modern Birkhäuser Classics, 2nd ed., Birkhäuser, Basel, 2007 ; Mamford D., Lektsii o teta-funktsiyakh, Mir, M., 1988 | MR
[45] S. M. Natanzon, “Moduli of real algebraic surfaces, and their superanalogues. Differentials, spinors, and Jacobians of real curves”, Russ. Math. Surv., 54:6 (1999), 1091–1147 | DOI | DOI | MR
[46] S. P. Novikov, “The periodic problem for the Korteweg–de Vries equation”, Funct. Anal. Appl., 8:3 (1974), 236–246 | DOI | MR
[47] Osborne A. R., Nonlinear ocean waves and the inverse scattering transform, Acad. Press, Amsterdam, 2010 | MR
[48] Pinkus A., Totally positive matrices, Cambridge Tracts Math., 181, Cambridge Univ. Press, Cambridge, 2010 | MR
[49] Postnikov A., Total positivity, Grassmannians, and networks, 2006, arXiv: math/0609764 [math.CO]
[50] Sato M., “Soliton equations as dynamical systems on an infinite dimensional Grassmann manifolds”, Random systems and dynamical systems, Proc. Symp. (Kyoto, 1981), RIMS Kokyuroku, 439, Kyoto Univ., Kyoto, 1981, 30–46
[51] G. Springer, Introduction to Riemann Surfaces, Addison-Wesley, Reading, MA, 1957 ; Springer Dzh., Vvedenie v teoriyu rimanovykh poverkhnostei, Izd-vo inostr. lit., M., 1960 | MR
[52] Swierczewski C., Deconinck B., “Computing Riemann theta functions in Sage with applications”, Math. Comput. Simul., 127 (2016), 263–272 | DOI | MR
[53] I. A. Taimanov, “Singular spectral curves in finite-gap integration”, Russ. Math. Surv., 66:1 (2011), 107–144 | DOI | DOI | MR
[54] O. Ya. Viro, “Real algebraic plane curves: Constructions with controlled topology”, Leningr. Math. J., 1:5 (1990), 1059–1134 | MR
[55] V. E. Zakharov, A. B. Shabat, “A scheme for integrating the nonlinear equations of mathematical physics by the method of the inverse scattering problem. I”, Funct. Anal. Appl., 8:3 (1974), 226–235 | DOI | MR