Analysis in algebras and modules
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Complex analysis, mathematical physics, and applications, Tome 301 (2018), pp. 108-118.

Voir la notice de l'article provenant de la source Math-Net.Ru

An algebraic technique adapted to the problems of fundamental theoretical physics is presented. The exposition is an elaboration and an extension of the methods used in different areas of mathematical physics.
Keywords: algebra, multiplicator, differentiation, covariant derivative, gauge transform, differential form, cohomology.
Mots-clés : module, moduli space
@article{TM_2018_301_a7,
     author = {V. V. Zharinov},
     title = {Analysis in algebras and modules},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {108--118},
     publisher = {mathdoc},
     volume = {301},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2018_301_a7/}
}
TY  - JOUR
AU  - V. V. Zharinov
TI  - Analysis in algebras and modules
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2018
SP  - 108
EP  - 118
VL  - 301
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2018_301_a7/
LA  - ru
ID  - TM_2018_301_a7
ER  - 
%0 Journal Article
%A V. V. Zharinov
%T Analysis in algebras and modules
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2018
%P 108-118
%V 301
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2018_301_a7/
%G ru
%F TM_2018_301_a7
V. V. Zharinov. Analysis in algebras and modules. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Complex analysis, mathematical physics, and applications, Tome 301 (2018), pp. 108-118. http://geodesic.mathdoc.fr/item/TM_2018_301_a7/

[1] A. K. Gushchin, “Solvability of the Dirichlet problem for an inhomogeneous second-order elliptic equation”, Sb. Math., 206:10 (2015), 1410–1439 | DOI | DOI | MR | Zbl

[2] A. K. Gushchin, “$L_p$-estimates for the nontangential maximal function of the solution to a second-order elliptic equation”, Sb. Math., 207:10 (2016), 1384–1409 | DOI | DOI | MR | Zbl

[3] Katanaev M. O., “On homogeneous and isotropic universe”, Mod. Phys. Lett. A, 30:34 (2015), 1550186 | DOI | MR | Zbl

[4] M. O. Katanaev, “Cosmological models with homogeneous and isotropic spatial sections”, Theor. Math. Phys., 191:2 (2017), 661–668 | DOI | DOI | MR | MR | Zbl

[5] S. V. Kozyrev, “Ultrametricity in the theory of complex systems”, Theor. Math. Phys., 185:2 (2015), 1665–1677 | DOI | DOI | MR | Zbl

[6] S. MacLane, Homology, Grundl. Math. Wiss., 114, Springer, Berlin, 1963 | MR | Zbl

[7] N. G. Marchuk, “Demonstration representation and tensor products of Clifford algebras”, Proc. Steklov Inst. Math., 290 (2015), 143–154 | DOI | DOI | MR | Zbl

[8] Marchuk N. G., Shirokov D. S., “General solutions of one class of field equations”, Rep. Math. Phys., 78:3 (2016), 305–326 | DOI | MR | Zbl

[9] Trushechkin A. S., Volovich I. V., “Perturbative treatment of inter-site couplings in the local description of open quantum networks”, Europhys. Lett., 113:3 (2016), 30005 | DOI

[10] V. V. Zharinov, Algebraic and Geometric Foundation of Mathematical Physics, Lekts. Kursy Nauchno-Obrazov. Tsentra, 9, Steklov Math. Inst., Moscow, 2008 | DOI

[11] V. V. Zharinov, “The formal de Rham complex”, Theor. Math. Phys., 174:2 (2013), 220–235 | DOI | DOI | MR | Zbl

[12] V. V. Zharinov, “Algebraic aspects of gauge theories”, Theor. Math. Phys., 180:2 (2014), 942–957 | DOI | DOI | MR | Zbl

[13] V. V. Zharinov, “Conservation laws, differential identities, and constraints of partial differential equations”, Theor. Math. Phys., 185:2 (2015), 1557–1581 | DOI | DOI | MR | Zbl

[14] V. V. Zharinov, “Bäcklund transformations”, Theor. Math. Phys., 189:3 (2016), 1681–1692 | DOI | DOI | MR | Zbl