Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2018_301_a7, author = {V. V. Zharinov}, title = {Analysis in algebras and modules}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {108--118}, publisher = {mathdoc}, volume = {301}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2018_301_a7/} }
V. V. Zharinov. Analysis in algebras and modules. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Complex analysis, mathematical physics, and applications, Tome 301 (2018), pp. 108-118. http://geodesic.mathdoc.fr/item/TM_2018_301_a7/
[1] A. K. Gushchin, “Solvability of the Dirichlet problem for an inhomogeneous second-order elliptic equation”, Sb. Math., 206:10 (2015), 1410–1439 | DOI | DOI | MR | Zbl
[2] A. K. Gushchin, “$L_p$-estimates for the nontangential maximal function of the solution to a second-order elliptic equation”, Sb. Math., 207:10 (2016), 1384–1409 | DOI | DOI | MR | Zbl
[3] Katanaev M. O., “On homogeneous and isotropic universe”, Mod. Phys. Lett. A, 30:34 (2015), 1550186 | DOI | MR | Zbl
[4] M. O. Katanaev, “Cosmological models with homogeneous and isotropic spatial sections”, Theor. Math. Phys., 191:2 (2017), 661–668 | DOI | DOI | MR | MR | Zbl
[5] S. V. Kozyrev, “Ultrametricity in the theory of complex systems”, Theor. Math. Phys., 185:2 (2015), 1665–1677 | DOI | DOI | MR | Zbl
[6] S. MacLane, Homology, Grundl. Math. Wiss., 114, Springer, Berlin, 1963 | MR | Zbl
[7] N. G. Marchuk, “Demonstration representation and tensor products of Clifford algebras”, Proc. Steklov Inst. Math., 290 (2015), 143–154 | DOI | DOI | MR | Zbl
[8] Marchuk N. G., Shirokov D. S., “General solutions of one class of field equations”, Rep. Math. Phys., 78:3 (2016), 305–326 | DOI | MR | Zbl
[9] Trushechkin A. S., Volovich I. V., “Perturbative treatment of inter-site couplings in the local description of open quantum networks”, Europhys. Lett., 113:3 (2016), 30005 | DOI
[10] V. V. Zharinov, Algebraic and Geometric Foundation of Mathematical Physics, Lekts. Kursy Nauchno-Obrazov. Tsentra, 9, Steklov Math. Inst., Moscow, 2008 | DOI
[11] V. V. Zharinov, “The formal de Rham complex”, Theor. Math. Phys., 174:2 (2013), 220–235 | DOI | DOI | MR | Zbl
[12] V. V. Zharinov, “Algebraic aspects of gauge theories”, Theor. Math. Phys., 180:2 (2014), 942–957 | DOI | DOI | MR | Zbl
[13] V. V. Zharinov, “Conservation laws, differential identities, and constraints of partial differential equations”, Theor. Math. Phys., 185:2 (2015), 1557–1581 | DOI | DOI | MR | Zbl
[14] V. V. Zharinov, “Bäcklund transformations”, Theor. Math. Phys., 189:3 (2016), 1681–1692 | DOI | DOI | MR | Zbl