Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2018_301_a20, author = {E. M. Chirka}, title = {Potentials on a~compact {Riemann} surface}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {287--319}, publisher = {mathdoc}, volume = {301}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2018_301_a20/} }
E. M. Chirka. Potentials on a~compact Riemann surface. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Complex analysis, mathematical physics, and applications, Tome 301 (2018), pp. 287-319. http://geodesic.mathdoc.fr/item/TM_2018_301_a20/
[1] A. I. Aptekarev, G. López Lagomasino, A. Martínez-Finkelshtein, “On Nikishin systems with discrete components and weak asymptotics of multiple orthogonal polynomials”, Russ. Math. Surv., 72:3 (2017), 389–449 | DOI | DOI | MR | Zbl
[2] A. I. Aptekarev, V. G. Lysov, “Systems of Markov functions generated by graphs and the asymptotics of their Hermite–Padé approximants”, Sb. Math., 201:2 (2010), 183–234 | DOI | DOI | MR | Zbl
[3] Buser P., Geometry and spectra of compact Riemann surfaces, Birkhäuser, Boston, 1992 | MR | Zbl
[4] V. I. Buslaev, S. P. Suetin, “On equilibrium problems related to the distribution of zeros of the Hermite–Padé polynomials”, Proc. Steklov Inst. Math., 290 (2015), 256–263 | DOI | DOI | MR | Zbl
[5] E. M. Chirka, Riemann Surfaces, Lekts. Kursy Nauchno-Obrazov. Tsentra, 1, Steklov Math. Inst., Moscow, 2006 | DOI | Zbl
[6] E. M. Chirka, “Harnack inequalities, Kobayashi distances and holomorphic motions”, Proc. Steklov Inst. Math., 279 (2012), 194–206 | DOI | MR | Zbl
[7] E. M. Chirka, “On the $\bar\partial$-problem with $L^2$-estimates on a Riemann surface”, Proc. Steklov Inst. Math., 290 (2015), 264–276 | DOI | DOI | MR | Zbl
[8] de Rham G., Differentiable manifolds: Forms, currents, harmonic forms, Springer, Berlin, 1984 | MR | Zbl
[9] Farkas H. V., Kra I., Riemann surfaces, Springer, New York, 1980 | MR | Zbl
[10] Frostman O., Potentiel d'équilibre et capacité des ensembles avec quelques applications à la théorie des fonctions, Meddelanden Lunds Univ. Mat. Sem., 3, Gleerup, Lund, 1935
[11] A. A. Gonchar, E. A. Rakhmanov, “On convergence of simultaneous Padé approximants for systems of functions of Markov type”, Proc. Steklov Inst. Math., 157 (1983), 31–50 | MR | Zbl | Zbl
[12] A. A. Gonchar, E. A. Rakhmanov, “Equilibrium measure and the distribution of zeros of extremal polynomials”, Math. USSR-Sb., 53:1 (1986), 119–130 | DOI | MR | Zbl
[13] A. A. Gonchar, E. A. Rakhmanov, “On the equilibrium problem for vector potentials”, Russ. Math. Surv., 40:4 (1985), 183–184 | DOI | MR | MR | Zbl
[14] A. A. Gonchar, E. A. Rakhmanov, “Equilibrium distributions and degree of rational approximation of analytic functions”, Math. USSR-Sb., 62:2 (1989), 305–348 | DOI | MR | Zbl | Zbl
[15] A. A. Gonchar, E. A. Rakhmanov, V. N. Sorokin, “Hermite–Padé approximants for systems of Markov-type functions”, Sb. Math., 188:5 (1997), 671–696 | DOI | DOI | MR | Zbl
[16] Hayman W. K., Kennedy P. B., Subharmonic functions, v. 1, Acad. Press, London, 1976 | MR | Zbl
[17] Hörmander L., The analysis of linear partial differential operators, v. 1, Distribution theory and Fourier analysis, Springer, Berlin, 1983 ; Khërmander L., Analiz lineinykh differentsialnykh operatorov s chastnymi proizvodnymi, v. 1, Teoriya raspredelenii i analiz Fure, Mir, M., 1986 | MR | Zbl | MR
[18] Hörmander L., Notions of convexity, Birkhäuser, Basel, 1994 | MR | Zbl
[19] Kang N.-G., Makarov N. G., Calculus of conformal fields on a compact Riemann surface, E-print, 2017, arXiv: 1708.07361[math-ph]
[20] A. V. Komlov, R. V. Palvelev, S. P. Suetin, E. M. Chirka, “Hermite–Padé approximants for meromorphic functions on a compact Riemann surface”, Russ. Math. Surv., 72:4 (2017), 671–706 | DOI | DOI | MR | Zbl
[21] N. S. Landkof, Foundations of Modern Potential Theory, Springer, Berlin, 1972 | MR | MR | Zbl
[22] Mumford D., Tata lectures on theta, v. I, Birkhäuser, Boston, 1983 ; v. II, 1984; Mamford D., Lektsii o teta-funktsiyakh, Mir, M., 1988 | MR | Zbl | MR
[23] E. A. Rakhmanov, “The Gonchar–Stahl $\rho^2$-theorem and associated directions in the theory of rational approximations of analytic functions”, Sb. Math., 207:9 (2016), 1236–1266 | DOI | DOI | MR | Zbl
[24] Ross J., Witt Nyström D., The Dirichlet problem for the complex homogeneous Monge–Ampère equation, E-print, 2017, arXiv: 1712.00405[math.CV]
[25] Rudin W., Functional analysis, McGraw-Hill, New York, 1973 ; Rudin U., Funktsionalnyi analiz, Mir, M., 1975 | MR | Zbl | MR
[26] Skinner B., Logarithmic potential theory on Riemann surfaces, PhD Thesis, Calif. Inst. Technol., Pasadena, 2015 | MR
[27] S. P. Suetin, “Distribution of the zeros of Padé polynomials and analytic continuation”, Russ. Math. Surv., 70:5 (2015), 901–951 | DOI | DOI | MR | Zbl
[28] Tsuji M., Potential theory in modern function theory, Maruzen Co., Tokyo, 1959 | MR | Zbl
[29] I. N. Vekua, Generalized Analytic Functions, 1st ed., Pergamon, Oxford, 1962 | MR | MR | Zbl