On quantum dynamics on $C^*$-algebras
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Complex analysis, mathematical physics, and applications, Tome 301 (2018), pp. 33-47.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the problem of constructing quantum dynamics for symmetric Hamiltonian operators that have no self-adjoint extensions. For an earlier studied model, it was found that an elliptic self-adjoint regularization of a symmetric Hamiltonian operator allows one to construct quantum dynamics for vector states on certain $C^*$-subalgebras of the algebra of bounded operators in a Hilbert space. In the present study, we prove that one can extend the dynamics to arbitrary states on these $C^*$-subalgebras while preserving the continuity and convexity. We show that the obtained extension of the dynamics of the set of states on $C^*$-subalgebras is the limit of a sequence of regularized dynamics under removal of the elliptic regularization. We also analyze the properties of the limit dynamics of the set of states on the $C^*$-subalgebras.
@article{TM_2018_301_a2,
     author = {I. V. Volovich and V. Zh. Sakbaev},
     title = {On quantum dynamics on $C^*$-algebras},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {33--47},
     publisher = {mathdoc},
     volume = {301},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2018_301_a2/}
}
TY  - JOUR
AU  - I. V. Volovich
AU  - V. Zh. Sakbaev
TI  - On quantum dynamics on $C^*$-algebras
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2018
SP  - 33
EP  - 47
VL  - 301
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2018_301_a2/
LA  - ru
ID  - TM_2018_301_a2
ER  - 
%0 Journal Article
%A I. V. Volovich
%A V. Zh. Sakbaev
%T On quantum dynamics on $C^*$-algebras
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2018
%P 33-47
%V 301
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2018_301_a2/
%G ru
%F TM_2018_301_a2
I. V. Volovich; V. Zh. Sakbaev. On quantum dynamics on $C^*$-algebras. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Complex analysis, mathematical physics, and applications, Tome 301 (2018), pp. 33-47. http://geodesic.mathdoc.fr/item/TM_2018_301_a2/

[1] Accardi L., Lu Y. G., Volovich I., Quantum theory and its stochastic limit, Springer, Berlin, 2002 | MR | Zbl

[2] G. G. Amosov, V. Zh. Sakbaev, “Geometric properties of systems of vector states and expansion of states in Pettis integrals”, St. Petersburg Math. J., 27:4 (2016), 589–597 | DOI | MR | Zbl

[3] I. Ya. Aref'eva, “Formation time of quark–gluon plasma in heavy-ion collisions in the holographic shock wave model”, Theor. Math. Phys., 184:3 (2015), 1239–1255 | DOI | DOI | MR | Zbl

[4] Aref'eva I. Ya., Khramtsov M. A., “AdS/CFT prescription for angle-deficit space and winding geodesics”, J. High Energy Phys., 2016:4 (2016), 121 | MR

[5] Bratteli O., Robinson D. W., Operator algebras and quantum statistical mechanics, v. 1, $C^*$- and $W^*$-algebras, symmetry groups, decomposition of states, Springer, New York, 1979 | MR | Zbl

[6] N. Dunford, J. T. Schwartz, Linear Operators, v. 1, General Theory, Interscience, New York, 1958 | MR | Zbl

[7] Yu. N. Drozhzhinov, “Multidimensional Tauberian theorems for generalized functions”, Russ. Math. Surv., 71:6 (2016), 1081–1134 | DOI | DOI | MR | Zbl

[8] M. O. Katanaev, “Killing vector fields and a homogeneous isotropic universe”, Phys. Usp., 59:7 (2016), 689–700 | DOI | DOI

[9] V. V. Kozlov, “Invariant measures of smooth dynamical systems, generalized functions and summation methods”, Izv. Math., 80:2 (2016), 342–358 | DOI | DOI | MR | Zbl

[10] V. V. Kozlov, D. V. Treschev, “Topology of the configuration space, singularities of the potential, and polynomial integrals of equations of dynamics”, Sb. Math., 207:10 (2016), 1435–1449 | DOI | DOI | MR

[11] Neidhardt H., Zagrebnov V. A., “On semibounded restrictions of self-adjoint operators”, Integral Eqns. Oper. Theory, 31:4 (1998), 489–512 | DOI | MR | Zbl

[12] A. Yu. Neklyudov, “Inversion of Chernoff's theorem”, Math. Notes, 83:4 (2008), 530–538 | DOI | DOI | MR | Zbl

[13] Ohya M., Volovich I., Mathematical foundations of quantum information and computation and its applications to nano- and bio-systems, Springer, New York, 2011 | MR | Zbl

[14] Yu. N. Orlov, V. Zh. Sakbaev, O. G. Smolyanov, “Unbounded random operators and Feynman formulae”, Izv. Math., 80:6 (2016), 1131–1158 | DOI | DOI | MR

[15] A. N. Pechen, N. B. Il'in, “On the problem of maximizing the transition probability in an $n$-level quantum system using nonselective measurements”, Proc. Steklov Inst. Math., 294 (2016), 233–240 | DOI | DOI | MR | Zbl

[16] V. Zh. Sakbaev, “Spectral aspects of regularization of the Cauchy problem for a degenerate equation”, Proc. Steklov Inst. Math., 261 (2008), 253–261 | DOI | MR | Zbl

[17] V. Zh. Sakbaev, “Averaging of quantum dynamical semigroups”, Theor. Math. Phys., 164:3 (2010), 1215–1221 | DOI | DOI | Zbl

[18] V. Zh. Sakbaev, “The set of quantum states and its averaged dynamic transformations”, Russ. Math., 55:10 (2011), 41–50 | DOI | MR | Zbl

[19] V. Zh. Sakbaev, “Cauchy Problem for Degenerating Linear Differential Equations and Averaging of Approximating Regularizations”, J. Math. Sci., 213:3 (2016), 287–459 | DOI | MR | Zbl

[20] V. Zh. Sakbaev, “On dynamical properties of a one-parameter family of transformations arising in averaging of semigroups”, J. Math. Sci., 202:6 (2014), 869–886 | DOI | MR | Zbl

[21] V. Zh. Sakbaev, “On the law of large numbers for compositions of independent random semigroups”, Russ. Math., 60:10 (2016), 72–76 | DOI | MR

[22] Sakbaev V. Zh., Volovich I. V., “Self-adjoint approximations of the degenerate Schrödinger operator”, $p$-Adic Numbers Ultrametric Anal. Appl., 9:1 (2017), 39–52 | DOI | MR | Zbl

[23] I. E. Segal, Mathematical Problems of Relativistic Physics, Am. Math. Soc., Providence, RI, 1963 | MR | MR | Zbl

[24] Trushechkin A., “Semiclassical evolution of quantum wave packets on the torus beyond the Ehrenfest time in terms of Husimi distributions”, J. Math. Phys., 58:6 (2017), 062102 | DOI | MR | Zbl

[25] Trushechkin A. S., Volovich I. V., “Perturbative treatment of inter-site couplings in the local description of open quantum networks”, Europhys. Lett., 113:3 (2016), 30005 | DOI

[26] Volkov B. O., “Stochastic Lévy differential operators and Yang–Mills equations”, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 20:2 (2017), 1750008 | DOI | MR | Zbl

[27] Volovich I. V., “Cauchy–Schwarz inequality-based criteria for the non-classicality of sub-Poisson and antibunched light”, Phys. Lett. A, 380:1–2 (2016), 56–58 | DOI | MR | Zbl

[28] I. V. Volovich, S. V. Kozyrev, “Manipulation of states of a degenerate quantum system”, Proc. Steklov Inst. Math., 294 (2016), 241–251 | DOI | DOI | MR | Zbl

[29] Yosida K., Hewitt E., “Finitely additive measures”, Trans. Amer. Math. Soc., 72 (1952), 46–66 | DOI | MR | Zbl