Finding stationary solutions of the Lindblad equation by analyzing the entropy production functional
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Complex analysis, mathematical physics, and applications, Tome 301 (2018), pp. 276-286

Voir la notice de l'article provenant de la source Math-Net.Ru

A necessary and sufficient condition is derived for a density operator to be a stationary solution for a certain class of Lindblad equations in the theory of open quantum systems. This condition is based on the properties of a functional that in some cases corresponds to entropy production. Examples are given where this condition is used to find stationary solutions.
@article{TM_2018_301_a19,
     author = {A. S. Trushechkin},
     title = {Finding stationary solutions of the {Lindblad} equation by analyzing the entropy production functional},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {276--286},
     publisher = {mathdoc},
     volume = {301},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2018_301_a19/}
}
TY  - JOUR
AU  - A. S. Trushechkin
TI  - Finding stationary solutions of the Lindblad equation by analyzing the entropy production functional
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2018
SP  - 276
EP  - 286
VL  - 301
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2018_301_a19/
LA  - ru
ID  - TM_2018_301_a19
ER  - 
%0 Journal Article
%A A. S. Trushechkin
%T Finding stationary solutions of the Lindblad equation by analyzing the entropy production functional
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2018
%P 276-286
%V 301
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2018_301_a19/
%G ru
%F TM_2018_301_a19
A. S. Trushechkin. Finding stationary solutions of the Lindblad equation by analyzing the entropy production functional. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Complex analysis, mathematical physics, and applications, Tome 301 (2018), pp. 276-286. http://geodesic.mathdoc.fr/item/TM_2018_301_a19/