Hermite--Pad\'e approximants of the Mittag-Leffler functions
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Complex analysis, mathematical physics, and applications, Tome 301 (2018), pp. 241-258

Voir la notice de l'article provenant de la source Math-Net.Ru

The convergence rate of type II Hermite–Padé approximants for a system of degenerate hypergeometric functions $\{_1F_1(1,\gamma;\lambda_jz)\}_{j=1}^k$ is found in the case when the numbers $\{\lambda_j\}_{j=1}^k$ are the roots of the equation $\lambda^k=1$ or real numbers and $\gamma\in\mathbb C\setminus\{0,-1,-2,\dots\}$. More general statements are obtained for approximants of this type (including nondiagonal ones) in the case of $k=2$. The theorems proved in the paper complement and generalize the results obtained earlier by other authors.
Keywords: Hermite–Padé polynomials, asymptotic equalities, Laplace method, saddle-point method.
Mots-clés : Hermite–Padé approximants
@article{TM_2018_301_a17,
     author = {A. P. Starovoitov},
     title = {Hermite--Pad\'e approximants of the {Mittag-Leffler} functions},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {241--258},
     publisher = {mathdoc},
     volume = {301},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2018_301_a17/}
}
TY  - JOUR
AU  - A. P. Starovoitov
TI  - Hermite--Pad\'e approximants of the Mittag-Leffler functions
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2018
SP  - 241
EP  - 258
VL  - 301
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2018_301_a17/
LA  - ru
ID  - TM_2018_301_a17
ER  - 
%0 Journal Article
%A A. P. Starovoitov
%T Hermite--Pad\'e approximants of the Mittag-Leffler functions
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2018
%P 241-258
%V 301
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2018_301_a17/
%G ru
%F TM_2018_301_a17
A. P. Starovoitov. Hermite--Pad\'e approximants of the Mittag-Leffler functions. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Complex analysis, mathematical physics, and applications, Tome 301 (2018), pp. 241-258. http://geodesic.mathdoc.fr/item/TM_2018_301_a17/