Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2018_301_a17, author = {A. P. Starovoitov}, title = {Hermite--Pad\'e approximants of the {Mittag-Leffler} functions}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {241--258}, publisher = {mathdoc}, volume = {301}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2018_301_a17/} }
A. P. Starovoitov. Hermite--Pad\'e approximants of the Mittag-Leffler functions. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Complex analysis, mathematical physics, and applications, Tome 301 (2018), pp. 241-258. http://geodesic.mathdoc.fr/item/TM_2018_301_a17/
[1] A. I. Aptekarev, “Convergence of rational approximations to a set of exponents”, Moscow Univ. Math. Bull., 36:1 (1981), 81–86 | MR | Zbl | Zbl
[2] A. I. Aptekarev, “Padé approximations for the system $\{_1F_1(1,c;\lambda _iz)\}_{i=1}^k$”, Moscow Univ. Math. Bull., 36:2 (1981), 73–76 | MR | Zbl | Zbl
[3] A. I. Aptekarev, A. I. Bogolyubskii, M. Yattselev, “Convergence of ray sequences of Frobenius–Padé approximants”, Sb. Math., 208:3 (2017), 313–334 | DOI | DOI | MR | Zbl
[4] A. I. Aptekarev, V. I. Buslaev, A. Martínez-Finkelshtein, S. P. Suetin, “Padé approximants, continued fractions, and orthogonal polynomials”, Russ. Math. Surv., 66:6 (2011), 1049–1131 | DOI | DOI | MR | Zbl
[5] A. I. Aptekarev, S. A. Denisov, M. L. Yattselev, Selfadjoint Jacobi matrices on graphs and multiple orthogonal polynomials, Preprint No. 3, Keldysh Inst. Appl. Math., Moscow, 2018
[6] A. I. Aptekarev, A. Kuijlaars, “Hermite–Padé approximations and multiple orthogonal polynomial ensembles”, Russ. Math. Surv., 66:6 (2011), 1133–1199 | DOI | DOI | MR | Zbl
[7] Aptekarev A. I., Stahl H., “Asymptotics of Hermite–Padé polynomials”, Progress in approximation theory: An international perspective, Springer Ser. Comput. Math., 19, eds. A. A. Gonchar, E. B. Saff, Springer, New York, 1992, 127–167 | DOI | MR | Zbl
[8] A. V. Astafyeva, A. P. Starovoitov, “Hermite–Padé approximation of exponential functions”, Sb. Math., 207:6 (2016), 769–791 | DOI | DOI | MR | Zbl
[9] G. A. Baker (Jr.), P. Graves-Morris, Padé Approximants, v. 1, Basic Theory, Addison-Wesley, Reading, MA, 1981 ; т. 2, Обобщения и приложения, Мир, М., 1986. | MR | Zbl
[10] v. 2, Extensions and Applications, Addison-Wesley, Reading, MA, 1981 | MR | Zbl
[11] Braess D., “On the conjecture of Meinardus on rational approximation of $e^x$. II”, J. Approx. Theory, 40:4 (1984), 375–379 | DOI | MR | Zbl
[12] V. I. Buslaev, S. P. Suetin, “On equilibrium problems related to the distribution of zeros of the Hermite–Padé polynomials”, Proc. Steklov Inst. Math., 290 (2015), 256–263 | DOI | DOI | MR | Zbl
[13] De Bruin M. G., “Convergence in the Padé table for $_1F_1(1;c;x)$”, Nederl. Akad. Wet. Proc. A, 79 (1976), 408–418 | MR | Zbl
[14] M. M. Dzhrbashyan, Integral Transformations and Representations of Functions in the Complex Domain, Nauka, Moscow, 1966 (in Russian)
[15] Hermite C., “Sur la fonction exponentielle”, C. r. Acad. sci. Paris, 77 (1873), 18–24
[16] Klein F., Elementarnaya matematika s tochki zreniya vysshei, v. 1, Arifmetika, algebra, analiz, Nauka, M., 1987 ; F. Klein, Elementarmathematik vom höheren Standpunkte aus, v. 1, Arithmetik, Algebra, Analysis, J. Springer, Berlin, 1924 ; Elementary Mathematics from a Higher Standpoint, v. 1, Arithmetic, Algebra, Analysis, Springer, Berlin, 2016 | MR | MR | Zbl
[17] A. V. Komlov, N. G. Kruzhilin, R. V. Palvelev, S. P. Suetin, “Convergence of Shafer quadratic approximants”, Russ. Math. Surv., 71:2 (2016), 373–375 | DOI | DOI | MR | Zbl
[18] A. V. Komlov, R. V. Palvelev, S. P. Suetin, E. M. Chirka, “Hermite–Padé approximants for meromorphic functions on a compact Riemann surface”, Russ. Math. Surv., 72:4 (2017), 671–706 | DOI | DOI | MR | Zbl
[19] A. V. Komlov, S. P. Suetin, “Distribution of the zeros of Hermite–Padé polynomials”, Russ. Math. Surv., 70:6 (2015), 1179–1181 | DOI | DOI | MR | Zbl
[20] Kuijlaars A., Stahl H., Van Assche W., Wielonsky F., “Asymptotique des approximants de Hermite–Padé quadratiques de la fonction exponentielle et problèmes de Riemann–Hilbert”, C. r. Math. Acad. sci. Paris, 336:11 (2003), 893–896 | DOI | MR | Zbl
[21] Kuijlaars A. B. J., Stahl H., Van Assche W., Wielonsky F., “Type II Hermite–Padé approximation to the exponential function”, J. Comput. Appl. Math., 207:2 (2007), 227–244 | DOI | MR | Zbl
[22] Kuijlaars A. B. J., Van Assche W., Wielonsky F., “Quadratic Hermite–Padé approximation to the exponential function: A Riemann–Hilbert approach”, Constr. Approx., 21:3 (2005), 351–412 | DOI | MR | Zbl
[23] G. López Lagomasino, S. Medina Peralta, U. Fidalgo Prieto, “Hermite–Padé approximation for certain systems of meromorphic functions”, Sb. Math., 206:2 (2015), 225–241 | DOI | DOI | MR | Zbl
[24] Mahler K., “Zur Approximation der Exponentialfunktion und des Logarithmus. I”, J. reine angew. Math., 166 (1931), 118–136 ; “II”, J. reine angew. Math., 166 (1932), 137–150 | MR | Zbl | MR | Zbl
[25] Mittag-Leffler G., “Sur la nouvelle fonction $\mathrm E_\alpha(x)$”, C. r. Acad. sci. Paris, 137 (1903), 554–558
[26] E. M. Nikishin, V. N. Sorokin, Rational Approximations and Orthogonality, Am. Math. Soc., Providence, RI, 1991 | MR | MR | Zbl
[27] Perron O., Die Lehre von den Kettenbrüchen, Teubner, Leipzig, 1929 | MR | Zbl
[28] Yu. V. Sidorov, M. V. Fedoryuk, M. I. Shabunin, Lectures on the Theory of Functions of a Complex Variable, Nauka, Moscow, 1989 (in Russian) | MR
[29] Stahl H., “Asymptotics for quadratic Hermite–Padé polynomials associated with the exponential function”, Electron. Trans. Numer. Anal., 14 (2002), 195–222 | MR | Zbl
[30] Stahl H., “Quadratic Hermite–Padé polynomials associated with the exponential function”, J. Approx. Theory, 125:2 (2003), 238–294 | DOI | MR | Zbl
[31] Stahl H., “Asymptotic distributions of zeros of quadratic Hermite–Padé polynomials associated with the exponential function”, Constr. Approx., 23:2 (2006), 121–164 | DOI | MR | Zbl
[32] A. P. Starovoitov, “Hermitian approximation of two exponential functions”, Izv. Saratov. Univ. Mat. Mekh. Inf., 13:1(2) (2013), 87–91
[33] A. P. Starovoitov, “On the properties of Hermite–Padé approximants to the system of Mittag-Leffler functions”, Dokl. Nats. Akad. Nauk Belarusi, 57:1 (2013), 5–10 | MR | Zbl
[34] A. P. Starovoitov, “Hermite–Padé approximants to the system of Mittag-Leffler functions”, Probl. Fiz. Mat. Tekh., 2013, no. 1, 81–87 | Zbl
[35] A. P. Starovoitov, “The asymptotic form of the Hermite–Padé approximations for a system of Mittag-Leffler functions”, Russ. Math., 58:9 (2014), 49–56 | DOI | MR | Zbl
[36] A. P. Starovoitov, “Asymptotics of diagonal Hermite–Padé polynomials for the collection of exponential functions”, Math. Notes, 102:2 (2017), 277–288 | DOI | DOI | MR | Zbl
[37] A. P. Starovoitov, E. P. Kechko, “Upper bounds for the moduli of zeros of Hermite–Padé approximations for a set of exponential functions”, Math. Notes, 99:3 (2016), 417–425 | DOI | DOI | MR | Zbl
[38] A. P. Starovoitov, E. P. Kechko, “On some properties of Hermite–Padé approximants to an exponential system”, Proc. Steklov Inst. Math., 298 (2017), 317–333 | DOI | DOI | MR | Zbl
[39] A. P. Starovoitov, N. A. Starovoitova, “Padé approximants of the Mittag-Leffler functions”, Sb. Math., 198:7 (2007), 1011–1023 | DOI | DOI | MR | Zbl
[40] S. P. Suetin, “Padé approximants and efficient analytic continuation of a power series”, Russ. Math. Surv., 57:1 (2002), 43–141 | DOI | DOI | MR | Zbl
[41] S. P. Suetin, “Distribution of the zeros of Padé polynomials and analytic continuation”, Russ. Math. Surv., 70:5 (2015), 901–951 | DOI | DOI | MR | Zbl
[42] Van Assche W., “Multiple orthogonal polynomials, irrationality and transcendence”, Continued fractions: From analytic number theory to constructive approximation, Proc. Conf. (Univ. Missouri, 1998), Contemp. Math., 236, Amer. Math. Soc., Providence, RI, 1999, 325–342 | DOI | MR | Zbl
[43] Van Rossum H., “Systems of orthogonal and quasi orthogonal polynomials connected with the Padé table. I”, Nederl. Akad. Wet. Proc. A, 58 (1955), 517–525 | MR | Zbl
[44] Wielonsky F., “Asymptotics of diagonal Hermite–Padé approximants to $e^z$”, J. Approx. Theory, 90:2 (1997), 283–298 | DOI | MR | Zbl
[45] Yattselev M. L., “Strong asymptotics of Hermite–Padé approximants for Angelesco systems”, Can. J. Math., 68:5 (2016), 1159–1201 | DOI | MR | Zbl