On expanding neighborhoods of local universality of Gaussian unitary ensembles
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Complex analysis, mathematical physics, and applications, Tome 301 (2018), pp. 182-191.

Voir la notice de l'article provenant de la source Math-Net.Ru

The classical universality theorem states that the Christoffel–Darboux kernel of the Hermite polynomials scaled by a factor of $1/\sqrt n$ tends to the sine kernel in local variables $\widetilde x,\widetilde y$ in a neighborhood of a point $x^*\in(-\sqrt2,\sqrt2)$. This classical result is well known for $\widetilde x,\widetilde y\in K\Subset\mathbb R$. In this paper, we show that this classical result remains valid for expanding compact sets $K=K(n)$. An interesting phenomenon of admissible dependence of the expansion rate of compact sets $K(n)$ on $x^*$ is established. For $x^*\in(-\sqrt2,\sqrt2)\setminus\{0\}$ and for $x^*=0$, there are different growth regimes of compact sets $K(n)$. A transient regime is found.
@article{TM_2018_301_a12,
     author = {M. A. Lapik and D. N. Tulyakov},
     title = {On expanding neighborhoods of local universality of {Gaussian} unitary ensembles},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {182--191},
     publisher = {mathdoc},
     volume = {301},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2018_301_a12/}
}
TY  - JOUR
AU  - M. A. Lapik
AU  - D. N. Tulyakov
TI  - On expanding neighborhoods of local universality of Gaussian unitary ensembles
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2018
SP  - 182
EP  - 191
VL  - 301
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2018_301_a12/
LA  - ru
ID  - TM_2018_301_a12
ER  - 
%0 Journal Article
%A M. A. Lapik
%A D. N. Tulyakov
%T On expanding neighborhoods of local universality of Gaussian unitary ensembles
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2018
%P 182-191
%V 301
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2018_301_a12/
%G ru
%F TM_2018_301_a12
M. A. Lapik; D. N. Tulyakov. On expanding neighborhoods of local universality of Gaussian unitary ensembles. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Complex analysis, mathematical physics, and applications, Tome 301 (2018), pp. 182-191. http://geodesic.mathdoc.fr/item/TM_2018_301_a12/

[1] Aptekarev A. I., Bleher P. M., Kuijlaars A. B. J., “Large $n$ limit of Gaussian random matrices with external source. II”, Commun. Math. Phys., 259:2 (2005), 367–389 | DOI | MR | Zbl

[2] A. I. Aptekarev, A. Kuijlaars, “Hermite–Padé approximations and multiple orthogonal polynomial ensembles”, Russ. Math. Surv., 66:6 (2011), 1133–1199 | DOI | DOI | MR | Zbl

[3] A. I. Aptekarev, V. G. Lysov, “Systems of Markov functions generated by graphs and the asymptotics of their Hermite–Padé approximants”, Sb. Math., 201:2 (2010), 183–234 | DOI | DOI | MR | Zbl

[4] A. I. Aptekarev, V. G. Lysov, D. N. Tulyakov, “Global eigenvalue distribution regime of random matrices with an anharmonic potential and an external source”, Theor. Math. Phys., 159:1 (2009), 448–468 | DOI | DOI | MR | Zbl

[5] A. I. Aptekarev, V. G. Lysov, D. N. Tulyakov, “Random matrices with external source and the asymptotic behaviour of multiple orthogonal polynomials”, Sb. Math., 202:2 (2011), 155–206 | DOI | DOI | MR | Zbl

[6] A. I. Aptekarev, D. N. Tulyakov, “Asymptotics of Meixner polynomials and Christoffel–Darboux kernels”, Trans. Moscow Math. Soc., 2012 (2012), 67–106 | MR | Zbl

[7] Bufetov A. I., Qiu Y., “Equivalence of Palm measures for determinantal point processes associated with Hilbert spaces of holomorphic functions”, C. r. Math. Acad. sci. Paris, 353:6 (2015), 551–555 | DOI | MR | Zbl

[8] Deift P., Orthogonal polynomials and random matrices: A Riemann–Hilbert approach, Courant Lect. Notes Math., 3, Amer. Math. Soc., Providence, RI, 2000 | DOI | MR | Zbl

[9] Deift P., Kriecherbauer T., McLaughlin K. T.-R., Venakides S., Zhou X., “Uniform asymptotics for polynomials orthogonal with respect to varying exponential weights and applications to universality questions in random matrix theory”, Commun. Pure Appl. Math., 52:11 (1999), 1335–1425 | 3.0.CO;2-1 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[10] A. V. Komlov, N. G. Kruzhilin, R. V. Palvelev, S. P. Suetin, “Convergence of Shafer quadratic approximants”, Russ. Math. Surv., 71:2 (2016), 373–375 | DOI | DOI | MR | Zbl

[11] A. V. Komlov, R. V. Palvelev, S. P. Suetin, E. M. Chirka, “Hermite–Padé approximants for meromorphic functions on a compact Riemann surface”, Russ. Math. Surv., 72:4 (2017), 671–706 | DOI | DOI | MR | Zbl

[12] A. V. Komlov, S. P. Suetin, “Distribution of the zeros of Hermite–Padé polynomials”, Russ. Math. Surv., 70:6 (2015), 1179–1181 | DOI | DOI | MR | Zbl

[13] A. Martínez-Finkelshtein, E. A. Rakhmanov, S. P. Suetin, “Variation of the equilibrium energy and the $S$-property of stationary compact sets”, Sb. Math., 202:12 (2011), 1831–1852 | DOI | DOI | MR | Zbl

[14] M. L. Mehta, Random Matrices, Elsevier, Amsterdam, 2004 | MR | Zbl

[15] Pastur L., Shcherbina M., “Universality of the local eigenvalue statistics for a class of unitary invariant random matrix ensembles”, J. Stat. Phys., 86:1–2 (1997), 109–147 | DOI | MR | Zbl

[16] Szegő G., Orthogonal polynomials, Amer. Math. Soc., New York, 1959 | MR | Zbl