Some problems in the theory of ridge functions
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Complex analysis, mathematical physics, and applications, Tome 301 (2018), pp. 155-181

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $d\ge2$ and $E\subset\mathbb R^d$ be a set. A ridge function on $E$ is a function of the form $\varphi(\mathbf a\cdot\mathbf x)$, where $\mathbf x=(x_1,\dots,x_d)\in E$, $\mathbf a=(a_1,\dots,a_d)\in\mathbb R^d\setminus\{\mathbf0\}$, $\mathbf a\cdot\mathbf x=\sum_{j=1}^da_jx_j$, and $\varphi$ is a real-valued function. Ridge functions play an important role both in approximation theory and mathematical physics and in the solution of applied problems. The present paper is of survey character. It addresses the problems of representation and approximation of multidimensional functions by finite sums of ridge functions. Analogs and generalizations of ridge functions are also considered.
@article{TM_2018_301_a11,
     author = {S. V. Konyagin and A. A. Kuleshov and V. E. Maiorov},
     title = {Some problems in the theory of ridge functions},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {155--181},
     publisher = {mathdoc},
     volume = {301},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2018_301_a11/}
}
TY  - JOUR
AU  - S. V. Konyagin
AU  - A. A. Kuleshov
AU  - V. E. Maiorov
TI  - Some problems in the theory of ridge functions
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2018
SP  - 155
EP  - 181
VL  - 301
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2018_301_a11/
LA  - ru
ID  - TM_2018_301_a11
ER  - 
%0 Journal Article
%A S. V. Konyagin
%A A. A. Kuleshov
%A V. E. Maiorov
%T Some problems in the theory of ridge functions
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2018
%P 155-181
%V 301
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2018_301_a11/
%G ru
%F TM_2018_301_a11
S. V. Konyagin; A. A. Kuleshov; V. E. Maiorov. Some problems in the theory of ridge functions. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Complex analysis, mathematical physics, and applications, Tome 301 (2018), pp. 155-181. http://geodesic.mathdoc.fr/item/TM_2018_301_a11/