Some problems in the theory of ridge functions
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Complex analysis, mathematical physics, and applications, Tome 301 (2018), pp. 155-181.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $d\ge2$ and $E\subset\mathbb R^d$ be a set. A ridge function on $E$ is a function of the form $\varphi(\mathbf a\cdot\mathbf x)$, where $\mathbf x=(x_1,\dots,x_d)\in E$, $\mathbf a=(a_1,\dots,a_d)\in\mathbb R^d\setminus\{\mathbf0\}$, $\mathbf a\cdot\mathbf x=\sum_{j=1}^da_jx_j$, and $\varphi$ is a real-valued function. Ridge functions play an important role both in approximation theory and mathematical physics and in the solution of applied problems. The present paper is of survey character. It addresses the problems of representation and approximation of multidimensional functions by finite sums of ridge functions. Analogs and generalizations of ridge functions are also considered.
@article{TM_2018_301_a11,
     author = {S. V. Konyagin and A. A. Kuleshov and V. E. Maiorov},
     title = {Some problems in the theory of ridge functions},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {155--181},
     publisher = {mathdoc},
     volume = {301},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2018_301_a11/}
}
TY  - JOUR
AU  - S. V. Konyagin
AU  - A. A. Kuleshov
AU  - V. E. Maiorov
TI  - Some problems in the theory of ridge functions
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2018
SP  - 155
EP  - 181
VL  - 301
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2018_301_a11/
LA  - ru
ID  - TM_2018_301_a11
ER  - 
%0 Journal Article
%A S. V. Konyagin
%A A. A. Kuleshov
%A V. E. Maiorov
%T Some problems in the theory of ridge functions
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2018
%P 155-181
%V 301
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2018_301_a11/
%G ru
%F TM_2018_301_a11
S. V. Konyagin; A. A. Kuleshov; V. E. Maiorov. Some problems in the theory of ridge functions. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Complex analysis, mathematical physics, and applications, Tome 301 (2018), pp. 155-181. http://geodesic.mathdoc.fr/item/TM_2018_301_a11/

[1] Agranovsky M. L., Quinto E. T., “Injectivity sets for the Radon transform over circles and complete systems of radial functions”, J. Funct. Anal., 139:2 (1996), 383–414 | DOI | MR | Zbl

[2] Aliev R. A., Ismailov V. E., “On a smoothness problem in ridge function representation”, Adv. Appl. Math., 73 (2016), 154–169 | DOI | MR | Zbl

[3] V. I. Arnol'd, “On functions of three variables”, Am. Math. Soc. Transl. Ser. 2, 28 (1963), 51–54 | MR | Zbl | Zbl

[4] M.-B. A. Babaev, “Approximation of polynomials in two variables by functions of the form $\phi(x)+\psi(y)$”, Sov. Math. Dokl., 11 (1970), 1034–1036 | MR | Zbl

[5] M.-B. A. Babaev, “Approximation of polynomials in two variables by sums of functions of one variable”, Izv. Akad. Nauk Azerb. SSR. Ser. Fiz.-Tekh. Mat. Nauk, 1971, no. 2, 23–29 | Zbl

[6] M.-B. A. Babaev, “On obtaining close estimates in the approximation of functions of many variables by sums of functions of a fewer number of variables”, Math. Notes, 12 (1972), 495–500 | DOI | MR | Zbl

[7] M.-B. A. Babaev, “On the properties of the best approximation function”, Izv. Akad. Nauk Azerb. SSR. Ser. Fiz.-Tekh. Mat. Nauk, 1972, no. 3, 20–25 | MR

[8] M.-B. A. Babaev, “Approximation of functions of three variables by sums of functions of two variables”, Soobshch. Akad. Nauk Gruz. SSR, 83:2 (1976), 309–312 | MR | Zbl

[9] M.-B. A. Babaev, “Direct theorems for approximation of functions of many variables by sums of functions of a fewer number of variables”, Special Issues in Function Theory, 2, Elm, Baku, 1980, 3–30 (in Russian)

[10] M.-B. A. Babaev, “Extremal elements and the value of the best approximation of a monotone function on $R^n$ by sums of functions of fewer variables”, Sov. Math. Dokl., 26 (1982), 1–4 | MR | Zbl

[11] M.-B. A. Babaev, “Extremal properties and two-sided estimates in approximation by sums of functions of lesser number of variables”, Math. Notes, 36:5 (1984), 821–828 | DOI | MR | Zbl

[12] M.-B. A. Babaev, “Best approximation by functions of fewer variables”, Sov. Math. Dokl., 30 (1984), 629–632 | MR | Zbl

[13] M.-B. A. Babaev, “Estimates of best approximation by quasipolynomials”, Theory of Functions and Approximations, Proc. 2nd Saratov Winter School, 1984. Part 1, Saratov. Univ., Saratov, 1986, 91–98 (in Russian)

[14] M.-B. A. Babaev, “The approximation of Sobolev classes of functions by sums of products of functions of fewer variables”, Proc. Steklov Inst. Math., 180 (1989), 31–33 | Zbl

[15] M.-B. A. Babaev, “Best approximation by bilinear forms”, Math. Notes, 46:2 (1989), 588–596 | DOI | MR | Zbl

[16] M.-B. A. Babaev, “Approximation of Sobolev classes of functions by sums of products of functions of fewer variables”, Math. Notes, 48:6 (1990), 1178–1186 | DOI | MR | Zbl

[17] M.-B. A. Babaev, “On the degree of approximation of the Sobolev class $W_q^r$ by bilinear forms in $L_p$ for $1\le q\le p\le2$”, Math. USSR-Sb., 72:1 (1992), 113–120 | DOI | MR | Zbl | Zbl

[18] Barron A. R., “Universal approximation bounds for superpositions of a sigmoidal function”, IEEE Trans. Inf. Theory, 39:3 (1993), 930–945 | DOI | MR | Zbl

[19] Bartlett P. L., Maiorov V., Meir R., “Almost linear VC-dimension bounds for piecewise polynomial networks”, Neural Comput., 10:8 (1998), 2159–2173 | DOI

[20] Bary N., “Mémoire sur la représentation finie des fonctions continues. I: Les superpositions de fonctions absolument continues”, Math. Ann., 103 (1930), 185–248 | DOI | MR | Zbl

[21] Bary N., “Mémoire sur la représentation finie des fonctions continues. II: Le théorème fondamental sur la représentation finie”, Math. Ann., 103 (1930), 598–653 | DOI | MR | Zbl

[22] Bazarkhanov D., Temlyakov V., “Nonlinear tensor product approximation of functions”, J. Complexity, 31:6 (2015), 867–884 | DOI | MR | Zbl

[23] Braess D., Pinkus A., “Interpolation by ridge functions”, J. Approx. Theory, 73:2 (1993), 218–236 | DOI | MR | Zbl

[24] Yu. A. Brudnyi, “Approximation of functions of $n$ variables by quasipolynomials”, Math. USSR-Izv., 4:3 (1970), 568–586 | DOI | MR | Zbl

[25] Buhmann M. D., “Radial functions on compact support”, Proc. Edinb. Math. Soc. Ser. 2, 41:1 (1998), 33–46 | DOI | MR | Zbl

[26] Buhmann M. D., “Radial basis functions”, Acta numerica, 9 (2000), 1–38 | DOI | MR | Zbl

[27] Buhmann M. D., Pinkus A., “Identifying linear combinations of ridge functions”, Adv. Appl. Math., 22:1 (1999), 103–118 | DOI | MR | Zbl

[28] Candès E. J., “Harmonic analysis of neural networks”, Appl. Comput. Harmon. Anal., 6:2 (1999), 197–218 | DOI | MR | Zbl

[29] Candès E. J., “Ridgelets: estimating with ridge functions”, Ann. Stat., 31:5 (2003), 1561–1599 | DOI | MR | Zbl

[30] Courant R., Hilbert D., Methoden der mathematischen Physik, v. 2, Springer, Berlin, 1937 | MR | Zbl

[31] De Boor C., DeVore R. A., Ron A., “Approximation from shift-invariant subspaces of $L_2(\mathbb R^d)$”, Trans. Amer. Math. Soc., 341:2 (1994), 787–806 | MR | Zbl

[32] De Bruijn N. G., “Functions whose differences belong to a given class”, Nieuw Arch. Wiskd. Ser. 2, 23 (1951), 194–218 | MR | Zbl

[33] De Bruijn N. G., “A difference property for Riemann integrable functions and for some similar classes of functions”, Nederl. Akad. Wet. Proc. A, 55 (1952), 145–151 | MR | Zbl

[34] DeVore R. A., Oskolkov K. I., Petrushev P. P., “Approximation by feed-forward neural networks”, Ann. Numer. Math., 4 (1997), 261–287 | MR | Zbl

[35] Diliberto S. P., Straus E. G., “On the approximation of a function of several variables by the sum of functions of fewer variables”, Pac. J. Math., 1 (1951), 195–210 | DOI | MR | Zbl

[36] Donoho D. L., Johnstone I. M., “Projection-based approximation and a duality with kernel methods”, Ann. Stat., 17:1 (1989), 58–106 | DOI | MR | Zbl

[37] Duchon J., “Splines minimizing rotation-invariant semi-norms in Sobolev spaces”, Constructive theory of functions of several variables, Proc. Conf. Oberwolfach, 1976, Lect. Notes Math., 571, Springer, Berlin, 1977, 85–100 | DOI | MR

[38] Dyn N., Narcowich F. J., Ward J. D., “Variational principles and Sobolev-type estimates for generalized interpolation on a Riemannian manifold”, Constr. Approx., 15:2 (1999), 175–208 | DOI | MR | Zbl

[39] Edwards R. E., “Spans of translates in $L^p(G)$”, J. Aust. Math. Soc., 5 (1965), 216–233 | DOI | MR | Zbl

[40] Ellacott S., Bose D., Neural networks: Deterministic methods of analysis, Int. Thomson Comput. Press, London, 1996

[41] Friedman J. H., Stuetzle W., “Projection pursuit regression”, J. Amer. Stat. Assoc., 76 (1981), 817–823 | DOI | MR

[42] A. L. Garkavi, V. A. Medvedev, S. Ya. Khavinson, “On the existence of a best uniform approximation of a function of several variables by the sum of functions of fewer variables”, Sb. Math., 187:5 (1996), 623–634 | DOI | DOI | MR | Zbl

[43] von Golitschek M., Light W. A., “Approximation by solutions of the planar wave equation”, SIAM J. Numer. Anal., 29:3 (1992), 816–830 | DOI | MR

[44] Gordon Y., Maiorov V., Meyer M., Reisner S., “On the best approximation by ridge functions in the uniform norm”, Constr. Approx., 18:1 (2002), 61–85 | DOI | MR | Zbl

[45] Herrlich H., Axiom of choice, Lect. Notes Math., 1876, Springer, Berlin, 2006 | MR | Zbl

[46] V. E. Ismailov, “Methods for computing the least deviation from the sums of functions of one variable”, Sib. Math. J., 47:5 (2006), 883–888 | DOI | MR | Zbl

[47] Ismailov V. E., “Characterization of an extremal sum of ridge functions”, J. Comput. Appl. Math., 205:1 (2007), 105–115 | DOI | MR | Zbl

[48] Ismailov V. E., “On the representation by linear superpositions”, J. Approx. Theory, 151:2 (2008), 113–125 | DOI | MR | Zbl

[49] Ismailov V. E., “On the proximinality of ridge functions”, Saraevo J. Math., 5:1 (2009), 109–118 | MR | Zbl

[50] Ismailov V. E., “A review of some results on ridge function approximation”, Azerb. J. Math., 3:1 (2013), 3–51 | MR | Zbl

[51] Ismailov V. E., Pinkus A., “Interpolation on lines by ridge functions”, J. Approx. Theory, 175 (2013), 91–113 | DOI | MR | Zbl

[52] Ito Y., Saito K., “Superposition of linearly independent functions and finite mappings by neural networks”, Math. Sci., 21:1 (1996), 27–33 | MR | Zbl

[53] John F., Plane waves and spherical means applied to partial differential equations, Interscience, New York, 1955 | MR | Zbl

[54] Jones L. K., “A simple lemma on greedy approximation in Hilbert space and convergence rates for projection pursuit regression and neural network training”, Ann. Stat., 20:1 (1992), 608–613 | DOI | MR | Zbl

[55] Jones L. K., “The computational intractability of training sigmoidal neural networks”, IEEE Trans. Inf. Theory, 43:1 (1997), 167–173 | DOI | MR | Zbl

[56] B. S. Kashin, “On some properties of the space of trigonometric polynomials that are related to uniform convergence”, Soobshch. Akad. Nauk Gruz. SSR, 93:2 (1979), 281–284 | MR | Zbl

[57] S. Ya. Khavinson, “A Chebyshev theorem for the approximation of a function of two variables by sums of the type $\varphi(x)+\psi(y)$”, Math. USSR Izv., 3:3 (1969), 617–632 | DOI | MR | Zbl | Zbl

[58] Khavinson S. Ya., Best approximation by linear superpositions (approximate nomography), Transl. Math. Monogr., 159, Amer. Math. Soc., Providence, RI, 1997 | MR | Zbl

[59] G. M. Khenkin, “Linear superpositions of continuously differentiable functions”, Sov. Math. Dokl., 5 (1964), 948–950 | MR | MR | Zbl

[60] A. N. Kolmogorov, “On the representation of continuous functions of several variables by superpositions of continuous functions of a smaller number of variables”, Am. Math. Soc. Transl. Ser. 2, 17 (1961), 369–373 | MR | Zbl

[61] A. N. Kolmogorov, “On the representation of continuous functions of many variables by superposition of continuous functions of one variable and addition”, Am. Math. Soc. Transl. Ser. 2, 28 (1963), 55–59 | MR | MR | Zbl | Zbl

[62] Konovalov V. N., Kopotun K. A., Maiorov V. E., “Convex polynomial and ridge approximation of Lipschitz functions in $\mathbb R^d$”, Rocky Mt. J. Math., 40:3 (2010), 957–976 | DOI | MR | Zbl

[63] Konovalov V. N., Leviatan D., Maiorov V. E., “Approximation by polynomials and ridge functions of classes of $s$-monotone radial functions”, J. Approx. Theory, 152:1 (2008), 20–51 | DOI | MR | Zbl

[64] Konovalov V. N., Leviatan D., Maiorov V. E., “Approximation of Sobolev classes by polynomials and ridge functions”, J. Approx. Theory, 159:1 (2009), 97–108 | DOI | MR | Zbl

[65] V. N. Konovalov, V. E. Maiorov, “Widths of some classes of convex functions and bodies”, Izv. Math., 74:1 (2010), 127–150 | DOI | DOI | MR | Zbl

[66] S. V. Konyagin, A. A. Kuleshov, “On the continuity of finite sums of ridge functions”, Math. Notes, 98:2 (2015), 336–338 | DOI | DOI | MR | Zbl

[67] S. V. Konyagin, A. A. Kuleshov, “On some properties of finite sums of ridge functions defined on convex subsets of $\mathbb R^n$”, Proc. Steklov Inst. Math., 293 (2016), 186–193 | DOI | DOI | MR | Zbl

[68] Konyagin S. V., Temlyakov V. N., “Some error estimates in learning theory”, Approximation theory, A volume dedicated to Borislav Bojanov, eds. D. K. Dimitrov, G. Nikolov, R. Uluchev, Marin Drinov Acad. Publ. House, Sofia, 2004, 126–144 | MR

[69] Kroó A., “On approximation by ridge functions”, Constr. Approx., 13:4 (1997), 447–460 | DOI | MR | Zbl

[70] A. A. Kuleshov, “On some properties of smooth sums of ridge functions”, Proc. Steklov Inst. Math., 294 (2016), 89–94 | DOI | DOI | MR | Zbl

[71] A. A. Kuleshov, “Continuous sums of ridge functions on a convex body and the class VMO”, Math. Notes, 102:6 (2017), 799–805 | DOI | DOI | MR | Zbl

[72] Kuleshov A. A., “Continuous sums of ridge functions on a convex body with Dini condition on moduli of continuity at boundary points”, Anal. Math. (to appear)

[73] Kůrková V., “Approximation of functions by perceptron networks with bounded number of hidden units”, Neural Networks, 8:5 (1995), 745–750 | DOI

[74] Kůrková V., “Trade-off between the size of parameters and the number of units in one-hidden-layer networks”, Neural Network World, 6:2 (1996), 191–200

[75] Light W., “Ridge functions, sigmoidal functions and neural networks”, Approximation theory VII, Proc. 7th Int. Symp. (Austin, TX, 1992), eds. E. W. Cheney et al., Acad. Press, Boston, 1993, 163–206 | MR

[76] Light W. A., Wayne H. S. J., “Some aspects of radial basis function approximation”, Approximation theory, spline functions and applications, Proc. NATO Adv. Study Inst. (Maratea, 1991), eds. S. P. Singh et al., Kluwer, Dordrecht, 1992, 163–190 | DOI | MR

[77] Lin S., Cao F., Xu Z., “Essential rate for approximation by spherical neural networks”, Neural Networks, 24:7 (2011), 752–758 | DOI | Zbl

[78] Lin V. Ya., Pinkus A., “Fundamentality of ridge functions”, J. Approx. Theory, 75:3 (1993), 295–311 | DOI | MR | Zbl

[79] Lin V. Ya., Pinkus A., “Approximation of multivariate functions”, Advances in computational mathematics, Proc. Conf. (New Delhi, 1993), eds. H. P. Dikshit, C. A. Micchelli, World Scientific, Singapore, 1994, 257–265 | MR | Zbl

[80] Logan B. F., Shepp L. A., “Optimal reconstruction of a function from its projections”, Duke Math. J., 42:4 (1975), 645–659 | DOI | MR | Zbl

[81] Madych W. R., Nelson S. A., “Multivariate interpolation and conditionally positive definite functions. II”, Math. Comput., 54 (1990), 211–230 | DOI | MR | Zbl

[82] Maiorov V. E., “On best approximation by ridge functions”, J. Approx. Theory, 99:1 (1999), 68–94 | DOI | MR | Zbl

[83] Maiorov V., “On best approximation of classes by radial functions”, J. Approx. Theory, 120:1 (2003), 36–70 | DOI | MR | Zbl

[84] Maiorov V., “On lower bounds in radial basis approximation”, Adv. Comput. Math., 22:2 (2005), 103–113 | DOI | MR | Zbl

[85] Maiorov V., “Optimal non-linear approximation using sets of finite pseudodimension”, East J. Approx., 11:1 (2005), 1–19 | MR | Zbl

[86] Maiorov V., “Pseudo-dimension and entropy of manifolds formed by affine-invariant dictionary”, Adv. Comput. Math., 25:4 (2006), 435–450 | DOI | MR | Zbl

[87] Maiorov V., “Approximation by neural networks and learning theory”, J. Complexity, 22:1 (2006), 102–117 | DOI | MR | Zbl

[88] Maiorov V. E., “Best approximation by ridge functions in $L_p$-spaces”, Ukr. Math. J., 62:3 (2010), 452–466 | DOI | MR | Zbl

[89] Maiorov V., “Geometric properties of the ridge function manifold”, Adv. Comput. Math., 32:2 (2010), 239–253 | DOI | MR | Zbl

[90] Maiorov V. E., Meir R., “On the near optimality of the stochastic approximation of smooth functions by neural networks”, Adv. Comput. Math., 13:1 (2000), 79–103 | DOI | MR | Zbl

[91] Maiorov V., Meir R., “Lower bounds for multivariate approximation by affine-invariant dictionaries”, IEEE Trans. Inf. Theory, 47:4 (2001), 1569–1575 | DOI | MR | Zbl

[92] Maiorov V. E., Meir R., Ratsaby J., “On the approximation of functional classes equipped with a uniform measure using ridge functions”, J. Approx. Theory, 99:1 (1999), 95–111 | DOI | MR | Zbl

[93] Maiorov V. E., Oskolkov K. I., Temlyakov V. N., “Gridge approximation and Radon compass”, Approximation theory, A volume dedicated to B. Sendov, eds. B. D. Bojanov, DARBA, Sofia, 2002, 284–309 | MR | Zbl

[94] Maiorov V., Pinkus A., “Lower bounds for approximation by MLP neural networks”, Neurocomputing, 25 (1999), 81–91 | DOI | Zbl

[95] Makovoz Y., “Random approximants and neural networks”, J. Approx. Theory, 85:1 (1996), 98–109 | DOI | MR | Zbl

[96] Marshall D. E., O'Farrell A. G., “Uniform approximation by real functions”, Fundam. math., 104 (1979), 203–211 | DOI | MR | Zbl

[97] Meir R., Maiorov V. E., “On the optimality of neural-network approximation using incremental algorithms”, IEEE Trans. Neural Netw., 11:2 (2000), 323–337 | DOI

[98] Mhaskar H. N., “Neural networks for optimal approximation of smooth and analytic functions”, Neural Comput., 8:1 (1996), 164–177 | DOI

[99] Mhaskar H. N., Micchelli C. A., “Approximation by superposition of sigmoidal and radial basis functions”, Adv. Appl. Math., 13:3 (1992), 350–373 | DOI | MR | Zbl

[100] Mhaskar H. N., Micchelli C. A., “Degree of approximation by neural and translation networks with a single hidden layer”, Adv. Appl. Math., 16:2 (1995), 151–183 | DOI | MR | Zbl

[101] Mhaskar H. N., Narcowich F. J., Ward J. D., “Approximation properties of zonal function networks using scattered data on the sphere”, Adv. Comput. Math., 11:2–3 (1999), 121–137 | DOI | MR | Zbl

[102] Narcowich F. J., Ward J. D., Wendland H., “Refined error estimates for radial basis function interpolation”, Constr. Approx., 19:4 (2003), 541–564 | DOI | MR | Zbl

[103] Yu. P. Ofman, “Best approximation of functions of two variables by functions of the form $\varphi(x)+\psi(y)$”, Am. Math. Soc. Transl. Ser. 2, 44 (1965), 12–28 | MR | Zbl | Zbl

[104] Olevskii A., “Completeness in $L^2(\mathbf R)$ of almost integer translates”, C. r. Acad. sci. Paris. Sér. 1, 324:9 (1997), 987–991 | DOI | MR | Zbl

[105] K. I. Oskolkov, “Ridge approximation, Chebyshev–Fourier analysis and optimal quadrature formulas”, Proc. Steklov Inst. Math., 219 (1997), 265–280 | MR | Zbl

[106] K. I. Oskolkov, “Linear and nonlinear methods of relief approximation”, J. Math. Sci., 155:1 (2008), 129–152 | DOI | MR | Zbl

[107] Petrushev P. P., “Approximation by ridge functions and neural networks”, SIAM J. Math. Anal., 30:1 (1999), 155–189 | DOI | MR | Zbl

[108] Pinkus A., “Some density problems in multivariate approximation”, Approximation theory, Proc. IDoMAT 95, Akad. Verlag, Berlin, 1995, 277–284 | MR | Zbl

[109] Pinkus A., “TDI-subspaces of $C(\mathbb R^d)$ and some density problems from neural networks”, J. Approx. Theory, 85:3 (1996), 269–287 | DOI | MR | Zbl

[110] Pinkus A., “Approximating by ridge functions”, Surface fitting and multiresolution methods, Vanderbilt Univ. Press, Nashville, TN, 1997, 279–292 | MR | Zbl

[111] Pinkus A., “Approximation theory of the MLP model in neural networks”, Acta numerica, 8 (1999), 143–195 | DOI | MR | Zbl

[112] Pinkus A., Ridge functions, Cambridge Tracts Math., 205, Cambridge Univ. Press, Cambridge, 2015 | MR | Zbl

[113] Pisier G., “Remarques sur un résultat non publié de B. Maurey”, Séminaire d'Analyse Fonctionnelle 1980–1981, Éc. polytech. Cent. Math., Palaiseau, 1981, Exp. 5 | MR

[114] M. K. Potapov, “Approximation ‘by an angle’ ”, Proc. Conf. on Constructive Theory of Functions, Approximation Theory (Budapest, 1969), Akad. Kiadó, Budapest, 1972, 371–399

[115] M. K. Potapov, “Approximation “by an angle” and embedding theorems”, Math. Balk., 2 (1972), 183–198 | Zbl

[116] M. K. Potapov, “The Hardy–Littlewood and Marcinkiewicz–Littlewood–Paley theorems, approximation ‘by an angle’, and the imbedding of certain classes of functions”, Mathematica, 14:2 (1972), 339–362

[117] M. K. Potapov, “Imbedding classes of functions with dominant mixed modulus of smoothness”, Proc. Steklov Inst. Math., 131 (1975), 206–218 | MR | Zbl | Zbl

[118] M. K. Potapov, “Imbedding theorems in a mixed metric”, Proc. Steklov Inst. Math., 156 (1983), 155–171 | MR | Zbl | Zbl

[119] Potapov M. K., Simonov B. V., Tikhonov S. Yu., “Mixed moduli of smoothness in $L_p$, $1

\infty$: a survey”, Surv. Approx. Theory, 8 (2013), 1–57 | MR | Zbl

[120] Powell M. J .D., “The theory of radial basis function approximation in 1990”, Advances in numerical analysis, v. 2, Wavelets, subdivision algorithms, and radial basis functions, ed. W. Light, Clarendon Press, Oxford, 1992, 105–210 | MR

[121] Ratsaby J., Maiorov V., “On the value of partial information for learning from examples”, J. Complexity, 13:4 (1997), 509–544 | DOI | MR | Zbl

[122] Schaback R., “Approximation by radial basis functions with finitely many centers”, Constr. Approx., 12:3 (1996), 331–340 | DOI | MR | Zbl

[123] Schwartz L., “Sur certaines familles non fondamentales de fonctions continues”, Bull. Soc. math. France, 72 (1944), 141–145 | DOI | MR | Zbl

[124] Stein E. M., Weiss G., Introduction to Fourier analysis on Euclidean spaces, Princeton Univ. Press, Princeton, NJ, 1971 | MR | Zbl

[125] M. I. Stesin, “Aleksandrov diameters of finite-dimensional sets and classes of smooth functions”, Sov. Math. Dokl., 16 (1975), 252–256 | MR | Zbl

[126] Temlyakov V. N., Approximation of periodic functions, Nova Sci. Publ., Commack, NY, 1993 | MR | Zbl

[127] Temlyakov V. N., On approximation by ridge functions, Preprint, Dept. Math. Univ. S. Carol., Columbia, SC, 1996

[128] Temlyakov V. N., “Nonlinear methods of approximation”, Found. Comput. Math., 3:1 (2003), 33–107 | DOI | MR | Zbl

[129] Temlyakov V., Greedy approximation, Cambridge Univ. Press, Cambridge, 2011 | MR | Zbl

[130] V. M. Tikhomirov, Some Problems in Approximation Theory, Mosk. Gos. Univ., Moscow, 1976 (in Russian) | MR

[131] Vakarchuk S. B., “$K$-functionals and $n$-widths of classes of periodic functions of two variables”, East J. Approx., 8:2 (2002), 161–182 | MR | Zbl

[132] S. B. Vakarchuk, A. V. Shvachko, “Kolmogorov-type inequalities for derived functions of two variables with application for approximation by an ‘angle’ ”, Russ. Math., 59:11 (2015), 1–18 | DOI | MR | Zbl

[133] F. P. Vasil'ev, Optimization Methods, Faktorial, Moscow, 2002 (in Russian)

[134] N. Ya. Vilenkin, Special Functions and the Theory of Group Representations, Am. Math. Soc., Providence, RI, 1968 | MR | MR | Zbl

[135] A. G. Vitushkin, “Some properties of linear superpositions of smooth functions”, Sov. Math. Dokl., 5 (1964), 741–744 | MR | MR | Zbl

[136] A. G. Vitushkin, “Proof of the existence of analytic functions of several complex variables which are not representable by superpositions of continuously differentiable functions of fewer variables”, Sov. Math. Dokl., 5 (1964), 793–796 | MR | MR | Zbl

[137] A. G. Vitushkin, “On Hilbert's thirteenth problem”, Hilbert's Problems, ed. P. S. Aleksandrov, Nauka, Moscow, 1969, 163–170 (in Russian)

[138] B. A. Vostretsov, M. A. Kreines, “Approximation of continuous functions by superpositions of plane waves”, Sov. Math. Dokl., 2 (1961), 1326–1329 | MR | MR | Zbl

[139] Wendland H., “Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree”, Adv. Comput. Math., 4 (1995), 389–396 | DOI | MR | Zbl

[140] Wendland H., “Error estimates for interpolation by compactly supported radial basis functions of minimal degree”, J. Approx. Theory, 93:2 (1998), 258–272 | DOI | MR | Zbl

[141] Wu Z.-M., Schaback R., “Local error estimates for radial basis function interpolation of scattered data”, IMA J. Numer. Anal., 13:1 (1993), 13–27 | DOI | MR | Zbl