Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2018_301_a1, author = {B. O. Volkov}, title = {L\'evy {Laplacians} in {Hida} calculus and {Malliavin} calculus}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {18--32}, publisher = {mathdoc}, volume = {301}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2018_301_a1/} }
B. O. Volkov. L\'evy Laplacians in Hida calculus and Malliavin calculus. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Complex analysis, mathematical physics, and applications, Tome 301 (2018), pp. 18-32. http://geodesic.mathdoc.fr/item/TM_2018_301_a1/
[1] Accardi L., Gibilisco P., Volovich I. V., “The Lévy Laplacian and the Yang–Mills equations”, Rend. Lincei. Sci. Fis. Nat., 4:3 (1993), 201–206 | DOI | MR
[2] Accardi L., Gibilisco P., Volovich I. V., “Yang–Mills gauge fields as harmonic functions for the Lévy Laplacian”, Russ. J. Math. Phys., 2:2 (1994), 235–250 | MR | Zbl
[3] Accardi L., Ji U.C., Saitô K., “Exotic Laplacians and associated stochastic processes”, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 12:1 (2009), 1–19 | DOI | MR | Zbl
[4] Accardi L., Ji U. C., Saitô K., “Exotic Laplacians and derivatives of white noise”, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 14:1 (2011), 1–14 | DOI | MR | Zbl
[5] Accardi L., Ji U. C., Saitô K., “The exotic (higher order Lévy) Laplacians generate the Markov processes given by distribution derivatives of white noise”, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 16:3 (2013), 1350020 | DOI | MR | Zbl
[6] Accardi L., Smolianov O. G., On Laplacians and traces, Conf. Semin. Mat. Univ. Bari, 250, Gius. Laterza Figli S.p.A., Bari, 1993 | MR
[7] L. Accardi, O. G. Smolyanov, “Feynman formulas for evolution equations with Lévy Laplacians on infinite-dimensional manifolds”, Dokl. Math., 73:2 (2006), 252–257 | DOI | MR | Zbl
[8] L. Accardi, O. G. Smolyanov, “Classical and nonclassical Lévy Laplacians”, Dokl. Math., 76:3 (2007), 801–805 | DOI | MR | Zbl
[9] L. Accardi, O. G. Smolyanov, “Generalized Lévy Laplacians and Cesàro means”, Dokl. Math., 79:1 (2009), 90–93 | DOI | MR | Zbl
[10] I. Ya. Aref'eva, I. V. Volovich, “Higher order functional conservation laws in gauge theories”, Generalized Functions and Their Application in Mathematical Physics, Proc. Int. Conf. (Moscow, 1980), Vychisl. Tsentr, Akad. Nauk SSSR, Moscow, 1981, 43–49
[11] Arnaudon M., Bauer R. O., Thalmaier A., “A probabilistic approach to the Yang–Mills heat equation”, J. math. pures appl. Sér. 9, 81:2 (2002), 143–166 | DOI | MR | Zbl
[12] Bogachev V. I., Gaussian measures, Amer. Math. Soc., Providence, RI, 1998 | MR | Zbl
[13] Bogachev V. I., Smolyanov O. G., Topological vector spaces and their applications, Springer, Cham, 2017 | MR | Zbl
[14] Feller M. N., The Lévy Laplacian, Cambridge Tracts Math., 166, Cambridge Univ. Press, Cambridge, 2005 | MR
[15] Hida T., Analysis of Brownian functionals, Carleton Math. Lect. Notes, 13, Carleton Univ., Ottawa, 1975 | MR | Zbl
[16] Hida T., Kuo H.-H., Potthoff J., Streit L., White noise: An infinite dimensional calculus, Kluwer, Dordrecht, 1993 | MR | Zbl
[17] Hida T., Si S., Lectures on white noise functionals, World Scientific, Hackensack, NJ, 2008 | MR | Zbl
[18] M. O. Katanaev, “Killing vector fields and a homogeneous isotropic universe”, Phys. Usp., 59:7 (2016), 689–700 | DOI | DOI
[19] Kuo H.-H., White noise distribution theory, CRC Press, Boca Raton, FL, 1996 | MR | Zbl
[20] Kuo H.-H., “Recent progress on the white noise approach to the Lévy Laplacian”, Quantum information and complexity, Proc. Meijo Wint. Sch. (2003), World Scientific, River Edge, NJ, 2004, 267–295 | DOI
[21] Kuo H.-H., Obata N., Saitô K., “Lévy Laplacian of generalized functions on a nuclear space”, J. Funct. Anal., 94:1 (1990), 74–92 | DOI | MR | Zbl
[22] Léandre R., Volovich I. V., “The stochastic Lévy Laplacian and Yang–Mills equation on manifolds”, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 4:2 (2001), 161–172 | DOI | MR | Zbl
[23] P. Lévy, Problèmes concrets d'analyse fonctionnelle, Gautier-Villars, Paris, 1951 | MR | Zbl
[24] Marchuk N. G., Shirokov D. S., “General solutions of one class of field equations”, Rep. Math. Phys., 78:3 (2016), 305–326 | DOI | MR | Zbl
[25] Nualart D., The Malliavin calculus and related topics, 2nd ed., Springer, Berlin, 2006 | MR | Zbl
[26] Obata N., White noise calculus and Fock space, Lect. Notes Math., 1577, Springer, Berlin, 1994 | DOI | MR | Zbl
[27] Sergeev A., “Twistor interpretation of harmonic spheres and Yang–Mills fields”, Mathematics, 3:1 (2015), 47–75 | DOI | MR | Zbl
[28] O. G. Smolyanov, S. A. Shkarin, “Gateaux complex differentiability and continuity”, Izv. Math., 68:6 (2004), 1217–1227 | DOI | DOI | MR | Zbl
[29] Volkov B. O., “Hierarchy of Lévy-Laplacians and quantum stochastic processes”, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 16:4 (2013), 1350027 | DOI | MR
[30] B. O. Volkov, “Lévy Laplacians and instantons”, Proc. Steklov Inst. Math., 290 (2015), 210–222 | DOI | DOI | MR | Zbl
[31] Volkov B. O., “Stochastic Lévy differential operators and Yang–Mills equations”, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 20:2 (2017), 1750008 | DOI | MR | Zbl
[32] B. O. Volkov, “Non-classical Lévy Laplacians in the stochastic analysis”, Mat. Mat. Model., 2017, no. 2, 25–38 | MR
[33] V. V. Zharinov, “Bäcklund transformations”, Theor. Math. Phys., 189:3 (2016), 1681–1692 | DOI | DOI | MR | Zbl