L\'evy Laplacians in Hida calculus and Malliavin calculus
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Complex analysis, mathematical physics, and applications, Tome 301 (2018), pp. 18-32.

Voir la notice de l'article provenant de la source Math-Net.Ru

Some connections between different definitions of Lévy Laplacians in the stochastic analysis are considered. Two approaches are used to define these operators. The standard one is based on the application of the theory of Sobolev–Schwartz distributions over the Wiener measure (Hida calculus). One can consider the chain of Lévy Laplacians parametrized by a real parameter with the help of this approach. One of the elements of this chain is the classical Lévy Laplacian. Another approach to defining the Lévy Laplacian is based on the application of the theory of Sobolev spaces over the Wiener measure (Malliavin calculus). It is proved that the Lévy Laplacian defined with the help of the second approach coincides with one of the elements of the chain of Lévy Laplacians, but not with the classical Lévy Laplacian, under the embedding of the Sobolev space over the Wiener measure in the space of generalized functionals over this measure. It is shown which Lévy Laplacian in the stochastic analysis is connected with the gauge fields.
Keywords: Lévy Laplacian, Yang–Mills equations
Mots-clés : Hida calculus, Malliavin calculus.
@article{TM_2018_301_a1,
     author = {B. O. Volkov},
     title = {L\'evy {Laplacians} in {Hida} calculus and {Malliavin} calculus},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {18--32},
     publisher = {mathdoc},
     volume = {301},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2018_301_a1/}
}
TY  - JOUR
AU  - B. O. Volkov
TI  - L\'evy Laplacians in Hida calculus and Malliavin calculus
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2018
SP  - 18
EP  - 32
VL  - 301
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2018_301_a1/
LA  - ru
ID  - TM_2018_301_a1
ER  - 
%0 Journal Article
%A B. O. Volkov
%T L\'evy Laplacians in Hida calculus and Malliavin calculus
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2018
%P 18-32
%V 301
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2018_301_a1/
%G ru
%F TM_2018_301_a1
B. O. Volkov. L\'evy Laplacians in Hida calculus and Malliavin calculus. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Complex analysis, mathematical physics, and applications, Tome 301 (2018), pp. 18-32. http://geodesic.mathdoc.fr/item/TM_2018_301_a1/

[1] Accardi L., Gibilisco P., Volovich I. V., “The Lévy Laplacian and the Yang–Mills equations”, Rend. Lincei. Sci. Fis. Nat., 4:3 (1993), 201–206 | DOI | MR

[2] Accardi L., Gibilisco P., Volovich I. V., “Yang–Mills gauge fields as harmonic functions for the Lévy Laplacian”, Russ. J. Math. Phys., 2:2 (1994), 235–250 | MR | Zbl

[3] Accardi L., Ji U.C., Saitô K., “Exotic Laplacians and associated stochastic processes”, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 12:1 (2009), 1–19 | DOI | MR | Zbl

[4] Accardi L., Ji U. C., Saitô K., “Exotic Laplacians and derivatives of white noise”, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 14:1 (2011), 1–14 | DOI | MR | Zbl

[5] Accardi L., Ji U. C., Saitô K., “The exotic (higher order Lévy) Laplacians generate the Markov processes given by distribution derivatives of white noise”, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 16:3 (2013), 1350020 | DOI | MR | Zbl

[6] Accardi L., Smolianov O. G., On Laplacians and traces, Conf. Semin. Mat. Univ. Bari, 250, Gius. Laterza Figli S.p.A., Bari, 1993 | MR

[7] L. Accardi, O. G. Smolyanov, “Feynman formulas for evolution equations with Lévy Laplacians on infinite-dimensional manifolds”, Dokl. Math., 73:2 (2006), 252–257 | DOI | MR | Zbl

[8] L. Accardi, O. G. Smolyanov, “Classical and nonclassical Lévy Laplacians”, Dokl. Math., 76:3 (2007), 801–805 | DOI | MR | Zbl

[9] L. Accardi, O. G. Smolyanov, “Generalized Lévy Laplacians and Cesàro means”, Dokl. Math., 79:1 (2009), 90–93 | DOI | MR | Zbl

[10] I. Ya. Aref'eva, I. V. Volovich, “Higher order functional conservation laws in gauge theories”, Generalized Functions and Their Application in Mathematical Physics, Proc. Int. Conf. (Moscow, 1980), Vychisl. Tsentr, Akad. Nauk SSSR, Moscow, 1981, 43–49

[11] Arnaudon M., Bauer R. O., Thalmaier A., “A probabilistic approach to the Yang–Mills heat equation”, J. math. pures appl. Sér. 9, 81:2 (2002), 143–166 | DOI | MR | Zbl

[12] Bogachev V. I., Gaussian measures, Amer. Math. Soc., Providence, RI, 1998 | MR | Zbl

[13] Bogachev V. I., Smolyanov O. G., Topological vector spaces and their applications, Springer, Cham, 2017 | MR | Zbl

[14] Feller M. N., The Lévy Laplacian, Cambridge Tracts Math., 166, Cambridge Univ. Press, Cambridge, 2005 | MR

[15] Hida T., Analysis of Brownian functionals, Carleton Math. Lect. Notes, 13, Carleton Univ., Ottawa, 1975 | MR | Zbl

[16] Hida T., Kuo H.-H., Potthoff J., Streit L., White noise: An infinite dimensional calculus, Kluwer, Dordrecht, 1993 | MR | Zbl

[17] Hida T., Si S., Lectures on white noise functionals, World Scientific, Hackensack, NJ, 2008 | MR | Zbl

[18] M. O. Katanaev, “Killing vector fields and a homogeneous isotropic universe”, Phys. Usp., 59:7 (2016), 689–700 | DOI | DOI

[19] Kuo H.-H., White noise distribution theory, CRC Press, Boca Raton, FL, 1996 | MR | Zbl

[20] Kuo H.-H., “Recent progress on the white noise approach to the Lévy Laplacian”, Quantum information and complexity, Proc. Meijo Wint. Sch. (2003), World Scientific, River Edge, NJ, 2004, 267–295 | DOI

[21] Kuo H.-H., Obata N., Saitô K., “Lévy Laplacian of generalized functions on a nuclear space”, J. Funct. Anal., 94:1 (1990), 74–92 | DOI | MR | Zbl

[22] Léandre R., Volovich I. V., “The stochastic Lévy Laplacian and Yang–Mills equation on manifolds”, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 4:2 (2001), 161–172 | DOI | MR | Zbl

[23] P. Lévy, Problèmes concrets d'analyse fonctionnelle, Gautier-Villars, Paris, 1951 | MR | Zbl

[24] Marchuk N. G., Shirokov D. S., “General solutions of one class of field equations”, Rep. Math. Phys., 78:3 (2016), 305–326 | DOI | MR | Zbl

[25] Nualart D., The Malliavin calculus and related topics, 2nd ed., Springer, Berlin, 2006 | MR | Zbl

[26] Obata N., White noise calculus and Fock space, Lect. Notes Math., 1577, Springer, Berlin, 1994 | DOI | MR | Zbl

[27] Sergeev A., “Twistor interpretation of harmonic spheres and Yang–Mills fields”, Mathematics, 3:1 (2015), 47–75 | DOI | MR | Zbl

[28] O. G. Smolyanov, S. A. Shkarin, “Gateaux complex differentiability and continuity”, Izv. Math., 68:6 (2004), 1217–1227 | DOI | DOI | MR | Zbl

[29] Volkov B. O., “Hierarchy of Lévy-Laplacians and quantum stochastic processes”, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 16:4 (2013), 1350027 | DOI | MR

[30] B. O. Volkov, “Lévy Laplacians and instantons”, Proc. Steklov Inst. Math., 290 (2015), 210–222 | DOI | DOI | MR | Zbl

[31] Volkov B. O., “Stochastic Lévy differential operators and Yang–Mills equations”, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 20:2 (2017), 1750008 | DOI | MR | Zbl

[32] B. O. Volkov, “Non-classical Lévy Laplacians in the stochastic analysis”, Mat. Mat. Model., 2017, no. 2, 25–38 | MR

[33] V. V. Zharinov, “Bäcklund transformations”, Theor. Math. Phys., 189:3 (2016), 1681–1692 | DOI | DOI | MR | Zbl