$C^m$ approximation of functions by solutions of second-order elliptic systems on compact sets in the plane
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Complex analysis, mathematical physics, and applications, Tome 301 (2018), pp. 7-17
Voir la notice de l'article provenant de la source Math-Net.Ru
This paper is a brief survey of the recent results in problems of approximating functions by solutions of homogeneous elliptic systems of PDEs on compact sets in the plane in the norms of $C^m$ spaces, $m\geq0$. We focus on general second-order systems. For such systems the paper complements the recent survey by M. Mazalov, P. Paramonov, and K. Fedorovskiy (2012), where the problems of $C^m$ approximation of functions by holomorphic, harmonic, and polyanalytic functions as well as by solutions of homogeneous elliptic PDEs with constant complex coefficients were considered.
Mots-clés :
elliptic equation, $s$-dimensional Hausdorff content
Keywords: second-order elliptic system, $C^m$ approximation, $\kappa _{m,\tau ,\sigma }$-capacity, Vitushkin localization operator.
Keywords: second-order elliptic system, $C^m$ approximation, $\kappa _{m,\tau ,\sigma }$-capacity, Vitushkin localization operator.
@article{TM_2018_301_a0,
author = {A. O. Bagapsh and K. Yu. Fedorovskiy},
title = {$C^m$ approximation of functions by solutions of second-order elliptic systems on compact sets in the plane},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {7--17},
publisher = {mathdoc},
volume = {301},
year = {2018},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TM_2018_301_a0/}
}
TY - JOUR AU - A. O. Bagapsh AU - K. Yu. Fedorovskiy TI - $C^m$ approximation of functions by solutions of second-order elliptic systems on compact sets in the plane JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2018 SP - 7 EP - 17 VL - 301 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2018_301_a0/ LA - ru ID - TM_2018_301_a0 ER -
%0 Journal Article %A A. O. Bagapsh %A K. Yu. Fedorovskiy %T $C^m$ approximation of functions by solutions of second-order elliptic systems on compact sets in the plane %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2018 %P 7-17 %V 301 %I mathdoc %U http://geodesic.mathdoc.fr/item/TM_2018_301_a0/ %G ru %F TM_2018_301_a0
A. O. Bagapsh; K. Yu. Fedorovskiy. $C^m$ approximation of functions by solutions of second-order elliptic systems on compact sets in the plane. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Complex analysis, mathematical physics, and applications, Tome 301 (2018), pp. 7-17. http://geodesic.mathdoc.fr/item/TM_2018_301_a0/