Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2018_301_a0, author = {A. O. Bagapsh and K. Yu. Fedorovskiy}, title = {$C^m$ approximation of functions by solutions of second-order elliptic systems on compact sets in the plane}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {7--17}, publisher = {mathdoc}, volume = {301}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2018_301_a0/} }
TY - JOUR AU - A. O. Bagapsh AU - K. Yu. Fedorovskiy TI - $C^m$ approximation of functions by solutions of second-order elliptic systems on compact sets in the plane JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2018 SP - 7 EP - 17 VL - 301 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2018_301_a0/ LA - ru ID - TM_2018_301_a0 ER -
%0 Journal Article %A A. O. Bagapsh %A K. Yu. Fedorovskiy %T $C^m$ approximation of functions by solutions of second-order elliptic systems on compact sets in the plane %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2018 %P 7-17 %V 301 %I mathdoc %U http://geodesic.mathdoc.fr/item/TM_2018_301_a0/ %G ru %F TM_2018_301_a0
A. O. Bagapsh; K. Yu. Fedorovskiy. $C^m$ approximation of functions by solutions of second-order elliptic systems on compact sets in the plane. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Complex analysis, mathematical physics, and applications, Tome 301 (2018), pp. 7-17. http://geodesic.mathdoc.fr/item/TM_2018_301_a0/
[1] A. O. Bagapsh, K. Yu. Fedorovskiy, “$C^1$ approximation of functions by solutions of second-order elliptic systems on compact sets in $\mathbb R^2$”, Proc. Steklov Inst. Math., 298 (2017), 35–50 | DOI | DOI | MR | Zbl
[2] Fedorovskiy K. Yu., “Two problems on approximation by solutions of elliptic systems on compact sets in the plane”, Complex Var. Elliptic Eqns., 63:7–8 (2018), 961–975 | DOI | MR | Zbl
[3] Hua L. K., Lin W., Wu C.-Q., Second-order systems of partial differential equations in the plane, Res. Notes Math., 128, Pitman Adv. Publ. Program, Boston, 1985 | MR | Zbl
[4] Mateu J., Netrusov Yu., Orobitg J., Verdera J., “BMO and Lipschitz approximation by solutions of elliptic equations”, Ann. Inst. Fourier, 46:4 (1996), 1057–1081 | DOI | MR
[5] M. Ya. Mazalov, “Uniform approximations by bianalytic functions on arbitrary compact subsets of $\mathbb C$”, Sb. Math., 195:5 (2004), 687–709 | DOI | DOI | MR | Zbl
[6] M. Ya. Mazalov, “A criterion for uniform approximability on arbitrary compact sets for solutions of elliptic equations”, Sb. Math., 199:1 (2008), 13–44 | DOI | DOI | MR | Zbl
[7] M. Ya. Mazalov, P. V. Paramonov, K. Yu. Fedorovskiy, “Conditions for $C^m$-approximability of functions by solutions of elliptic equations”, Russ. Math. Surv., 67:6 (2012), 1023–1068 | DOI | DOI | MR | Zbl
[8] S. N. Mergelyan, Uniform approximations to functions of a complex variable, AMS Transl., 101, Am. Math. Soc., Providence, RI, 1954 | MR | MR | Zbl | Zbl
[9] Narasimhan R., Analysis on real and complex manifolds, Adv. Stud. Pure Math., 1, North-Holland, Amsterdam, 1968 | MR | Zbl
[10] O'Farrell A. G., “Rational approximation in Lipschitz norms. II”, Proc. R. Ir. Acad. Sect. A, 79 (1979), 103–114 | MR | Zbl
[11] P. V. Paramonov, “On harmonic approximation in the $C^1$-norm”, Math. USSR-Sb., 71:1 (1992), 183–207 | DOI | MR | Zbl | Zbl
[12] P. V. Paramonov, “On approximation by harmonic polynomials in the $C^1$-norm on compact sets in $\mathbb R^2$”, Russ. Acad. Sci. Izv. Math., 42:2 (1994), 321–331 | MR | Zbl
[13] P. V. Paramonov, K. Yu. Fedorovskiy, “Uniform and $C^1$-approximability of functions on compact subsets of $\mathbb R^2$ by solutions of second-order elliptic equations”, Sb. Math., 190:2 (1999), 285–307 | DOI | DOI | MR | Zbl
[14] N. N. Tarkhanov, “Uniform approximation by solutions of elliptic systems”, Math. USSR-Sb., 61:2 (1988), 351–377 | DOI | MR | Zbl | Zbl
[15] Verdera J., “$C^m$ approximation by solutions of elliptic equations, and Calderón–Zygmund operators”, Duke Math. J., 55:1 (1987), 157–187 | DOI | MR | Zbl
[16] Verdera J., “Removability, capacity and approximation”, Complex potential theory, Proc. NATO Adv. Study Inst. Sémin. math. super. (Montréal, 1993), NATO Adv. Sci. Int. Ser. C: Math. Phys. Sci., 439, Kluwer, Dordrecht, 1994, 419–473 | MR | Zbl