$C^m$ approximation of functions by solutions of second-order elliptic systems on compact sets in the plane
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Complex analysis, mathematical physics, and applications, Tome 301 (2018), pp. 7-17

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is a brief survey of the recent results in problems of approximating functions by solutions of homogeneous elliptic systems of PDEs on compact sets in the plane in the norms of $C^m$ spaces, $m\geq0$. We focus on general second-order systems. For such systems the paper complements the recent survey by M. Mazalov, P. Paramonov, and K. Fedorovskiy (2012), where the problems of $C^m$ approximation of functions by holomorphic, harmonic, and polyanalytic functions as well as by solutions of homogeneous elliptic PDEs with constant complex coefficients were considered.
Mots-clés : elliptic equation, $s$-dimensional Hausdorff content
Keywords: second-order elliptic system, $C^m$ approximation, $\kappa _{m,\tau ,\sigma }$-capacity, Vitushkin localization operator.
@article{TM_2018_301_a0,
     author = {A. O. Bagapsh and K. Yu. Fedorovskiy},
     title = {$C^m$ approximation of functions by solutions of second-order elliptic systems on compact sets in the plane},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {7--17},
     publisher = {mathdoc},
     volume = {301},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2018_301_a0/}
}
TY  - JOUR
AU  - A. O. Bagapsh
AU  - K. Yu. Fedorovskiy
TI  - $C^m$ approximation of functions by solutions of second-order elliptic systems on compact sets in the plane
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2018
SP  - 7
EP  - 17
VL  - 301
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2018_301_a0/
LA  - ru
ID  - TM_2018_301_a0
ER  - 
%0 Journal Article
%A A. O. Bagapsh
%A K. Yu. Fedorovskiy
%T $C^m$ approximation of functions by solutions of second-order elliptic systems on compact sets in the plane
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2018
%P 7-17
%V 301
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2018_301_a0/
%G ru
%F TM_2018_301_a0
A. O. Bagapsh; K. Yu. Fedorovskiy. $C^m$ approximation of functions by solutions of second-order elliptic systems on compact sets in the plane. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Complex analysis, mathematical physics, and applications, Tome 301 (2018), pp. 7-17. http://geodesic.mathdoc.fr/item/TM_2018_301_a0/