Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2018_300_a9, author = {V. A. Levin and I. S. Manuylovich and V. V. Markov}, title = {Rotating detonation wave in an annular gap}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {135--145}, publisher = {mathdoc}, volume = {300}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2018_300_a9/} }
TY - JOUR AU - V. A. Levin AU - I. S. Manuylovich AU - V. V. Markov TI - Rotating detonation wave in an annular gap JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2018 SP - 135 EP - 145 VL - 300 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2018_300_a9/ LA - ru ID - TM_2018_300_a9 ER -
V. A. Levin; I. S. Manuylovich; V. V. Markov. Rotating detonation wave in an annular gap. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Modern problems and methods in mechanics, Tome 300 (2018), pp. 135-145. http://geodesic.mathdoc.fr/item/TM_2018_300_a9/
[1] F. A. Bykovskii, S. A. Zhdan, “Current status of research of continuous detonation in fuel–air mixtures (review)”, Combust. Explos. Shock Waves, 51 (2015), 21–35 | DOI
[2] S. K. Godunov, A. V. Zabrodin, M. Ya. Ivanov, A. N. Kraiko, G. P. Prokopov, Numerical Solution of Multidimensional Problems in Gas Dynamics, Nauka, Moscow, 1976 (in Russian) | MR
[3] Korobeinikov V. P., Levin V. A., Markov V. V., Chernyi G. G., “Propagation of blast waves in a combustible gas”, Astronaut. Acta, 17:5–6 (1972), 529–537
[4] Korobeinikov V. P., Markov V. V., “On propagation of combustion and detonation”, Arch. procesów spalania, 8:1 (1977), 101–118
[5] V. A. Levin, I. S. Manuĭlovich, V. V. Markov, “New effects of stratified gas detonation”, Dokl. Phys., 55:1 (2010), 28–32 | DOI
[6] V. A. Levin, I. S. Manuilovich, V. V. Markov, “Distinctive features of galloping detonation in a supersonic combustible-mixture flow under an inert gas layer”, Fluid Dyn., 45 (2010), 827–834 | DOI | MR
[7] V. A. Levin, I. S. Manuĭlovich, V. V. Markov, “Formation of detonation in rotating channels”, Dokl. Phys., 55:6 (2010), 308–311 | DOI
[8] V. A. Levin, I. S. Manuilovich, V. V. Markov, “Detonation initiation by rotation of an elliptic cylinder inside a circular cylinder and deformation of the channel walls”, J. Appl. Mech. Tech. Phys., 51 (2010), 463–470 | DOI
[9] V. A. Levin, I. S. Manuylovich, V. V. Markov, “Mathematical modeling of shock-wave processes under gas–solid boundary interaction”, Proc. Steklov Inst. Math., 281 (2013), 37–48 | DOI | DOI | MR
[10] V. A. Levin, I. S. Manuylovich, V. V. Markov, “Numerical simulation of spinning detonation in circular section channels”, Comput. Math. Math. Phys., 56 (2016), 1102–1117 | DOI | DOI | MR | Zbl
[11] V. A. Levin, V. V. Markov, “Initiation of detonation by concentrated release of energy”, Combust. Explos. Shock Waves, 11 (1975), 529–536 | DOI
[12] V. A. Levin, V. V. Markov, S. F. Osinkin, “Simulation of detonation initiation in a combustible mixture of gases by an electric discharge”, Sov. J. Chem. Phys., 3 (1985), 917–920
[13] V. A. Levin, V. V. Markov, S. F. Osinkin, “Direct initiation of detonation in a hydrogen–oxygen mixture diluted with nitrogen”, Fluid Dyn., 27 (1992), 873–876 | DOI
[14] V. A. Levin, V. V. Markov, S. F. Osinkin, “Initiation of detonation in hydrogen–air mixture by explosion of a spherical TNT charge”, Combust. Explos. Shock Waves, 31 (1995), 207–210 | DOI
[15] V. A. Levin, V. V. Markov, S. F. Osinkin, “Detonation wave reinitiation using a disintegrating shell”, Phys. Dokl., 42:1 (1997), 25–27
[16] V. A. Levin, V. V. Markov, S. F. Osinkin, “The effect of air interlayer on the shock initiation of detonation in a hydrogen–air mixture”, Proc. Steklov Inst. Math., 223 (1998), 131–138 | Zbl
[17] V. A. Levin, V. V. Markov, S. F. Osinkin, T. A. Zhuravskaya, “Determination of critical conditions for detonation initiation in a finite volume by a converging shock wave”, Combust. Explos. Shock Waves, 38 (2002), 693–699 | DOI
[18] V. A. Levin, V. V. Markov, T. A. Zhuravskaya, “Direct detonation initiation in a hydrogen–air mixture by a converging shock wave”, Khim. Fiz., 20:5 (2001), 26–30
[19] V. A. Levin, V. V. Markov, T. A. Zhuravskaya, S. F. Osinkin, “Nonlinear wave processes that occur during the initiation and propagation of gaseous detonation”, Proc. Steklov Inst. Math., 251 (2005), 192–205 | MR | Zbl
[20] V. A. Levin, V. V. Markov, T. A. Zhuravskaya, S. F. Osinkin, “Determination of critical conditions for the propagation of detonation waves in channels of complex shape”, Modern Problems in the Study of Fast Processes and Catastrophic Phenomena, On the Occasion of the 75th Birthday of V. P. Korobeinikov, ed. O. M. Belotserkovskii, Nauka, Moscow, 2007, 75–88 (in Russian)
[21] Levin V. A., Markov V. V., Zhuravskaya T. A., Osinkin S. F., “Initiation, propagation and stabilization of detonation in the supersonic gas flow”, Proc. Seventh Int. Symp. on Hazards, Prevention, and Migration of Industrial Explosions, ISHPMIE (St. Petersburg, July 7–11, 2008), v. 2, Torus Press, Moscow, 2008, 110–118
[22] Levin V. A., Markov V. V., Zhuravskaya T. A., Osinkin S. F., “Influence of obstacles on detonation wave propagation”, Deflagrative and detonative combustion, eds. G. Roy, S. Frolov, Torus Press, Moscow, 2010, 221–228
[23] V. V. Markov, “Numerical simulation of the formation of a multifrontal detonation-wave structure”, Sov. Phys. Dokl., 26 (1981), 503–505
[24] V. V. Mitrofanov, R. I. Soloukhin, “The diffraction of multifront detonation waves”, Sov. Phys. Dokl., 9 (1965), 1055–1058
[25] L. I. Sedov, V. P. Korobeĭnikov, V. V. Markov, “The theory of propagation of blast waves”, Proc. Steklov Inst. Math., 175 (1988), 187–228 | MR | Zbl
[26] R. I. Soloukhin, “Structure of a multifront detonation wave in a gas”, Combust. Explos. Shock Waves, 1:2 (1965), 23–29 | DOI
[27] L. V. Gurvich, I. V. Veyts (eds.), Thermodynamic Properties of Individual Substances, v. 1, Part 2, Hemisphere, New York, 1989
[28] Vl. Voevodin, S. Zhumatii, S. Sobolev, A. Antonov, P. Bryzgalov, D. Nikitenko, K. Stefanov, Vad. Voevodin, “Practice of the ‘Lomonosov’ Supercomputer”, Otkrytye Sistemy. SUBD, 2012, no. 7, 36–39
[29] Westbrook C. K., Dryer F. L., “Chemical kinetic modeling of hydrocarbon combustion”, Prog. Energy Combust. Sci., 10:1 (1984), 1–57 | DOI | MR
[30] T. A. Zhuravskaya, V. A. Levin, V. V. Markov, S. F. Osinkin, “Effect of the decomposing shell on the formation of detonation in a bounded volume by a converging shock wave”, Khim. Fiz., 22:8 (2003), 34–37