Rotating detonation wave in an annular gap
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Modern problems and methods in mechanics, Tome 300 (2018), pp. 135-145.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a three-dimensional unsteady flow with a rotating detonation wave arising in an annular gap of an axially symmetric engine between two parallel planes perpendicular to its symmetry axis. The corresponding problem is formulated and studied. It is assumed that there is a reservoir with quiescent homogeneous propane–air combustible mixture with given stagnation parameters; the mixture flows from the reservoir into the annular gap through its external cylindrical surface toward the symmetry axis, and the parameters of the mixture are determined by the pressure in the reservoir and the static pressure in the gap. The detonation products flow out from the gap into a space bounded on one side by an impermeable wall that is an extension of a side of the gap. Through a hole on the other side of the gap and through a conical output section with a half-opening angle of $45^\circ $, the gas flows out from the engine into the external space. We formulate a model of detonation initiation by energy supply in which the direction of rotation of the detonation wave is defined by the position of the energy-release zone of the initiator with respect to the solid wall situated in a plane passing through the symmetry axis. After a while, this solid wall disappears (burns out). We obtain and analyze unsteady shock-wave structures that arise during the formation of a steady rotating detonation. The analysis is carried out within single-stage combustion kinetics by the numerical method based on the Godunov scheme with the use of an original software system developed for multiparameter calculations and visualization of flows. The calculations were carried out on the Lomonosov supercomputer at Moscow State University.
Keywords: rotating detonation, numerical calculation, software complex, supercomputer.
Mots-clés : annular gap
@article{TM_2018_300_a9,
     author = {V. A. Levin and I. S. Manuylovich and V. V. Markov},
     title = {Rotating detonation wave in an annular gap},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {135--145},
     publisher = {mathdoc},
     volume = {300},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2018_300_a9/}
}
TY  - JOUR
AU  - V. A. Levin
AU  - I. S. Manuylovich
AU  - V. V. Markov
TI  - Rotating detonation wave in an annular gap
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2018
SP  - 135
EP  - 145
VL  - 300
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2018_300_a9/
LA  - ru
ID  - TM_2018_300_a9
ER  - 
%0 Journal Article
%A V. A. Levin
%A I. S. Manuylovich
%A V. V. Markov
%T Rotating detonation wave in an annular gap
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2018
%P 135-145
%V 300
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2018_300_a9/
%G ru
%F TM_2018_300_a9
V. A. Levin; I. S. Manuylovich; V. V. Markov. Rotating detonation wave in an annular gap. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Modern problems and methods in mechanics, Tome 300 (2018), pp. 135-145. http://geodesic.mathdoc.fr/item/TM_2018_300_a9/

[1] F. A. Bykovskii, S. A. Zhdan, “Current status of research of continuous detonation in fuel–air mixtures (review)”, Combust. Explos. Shock Waves, 51 (2015), 21–35 | DOI

[2] S. K. Godunov, A. V. Zabrodin, M. Ya. Ivanov, A. N. Kraiko, G. P. Prokopov, Numerical Solution of Multidimensional Problems in Gas Dynamics, Nauka, Moscow, 1976 (in Russian) | MR

[3] Korobeinikov V. P., Levin V. A., Markov V. V., Chernyi G. G., “Propagation of blast waves in a combustible gas”, Astronaut. Acta, 17:5–6 (1972), 529–537

[4] Korobeinikov V. P., Markov V. V., “On propagation of combustion and detonation”, Arch. procesów spalania, 8:1 (1977), 101–118

[5] V. A. Levin, I. S. Manuĭlovich, V. V. Markov, “New effects of stratified gas detonation”, Dokl. Phys., 55:1 (2010), 28–32 | DOI

[6] V. A. Levin, I. S. Manuilovich, V. V. Markov, “Distinctive features of galloping detonation in a supersonic combustible-mixture flow under an inert gas layer”, Fluid Dyn., 45 (2010), 827–834 | DOI | MR

[7] V. A. Levin, I. S. Manuĭlovich, V. V. Markov, “Formation of detonation in rotating channels”, Dokl. Phys., 55:6 (2010), 308–311 | DOI

[8] V. A. Levin, I. S. Manuilovich, V. V. Markov, “Detonation initiation by rotation of an elliptic cylinder inside a circular cylinder and deformation of the channel walls”, J. Appl. Mech. Tech. Phys., 51 (2010), 463–470 | DOI

[9] V. A. Levin, I. S. Manuylovich, V. V. Markov, “Mathematical modeling of shock-wave processes under gas–solid boundary interaction”, Proc. Steklov Inst. Math., 281 (2013), 37–48 | DOI | DOI | MR

[10] V. A. Levin, I. S. Manuylovich, V. V. Markov, “Numerical simulation of spinning detonation in circular section channels”, Comput. Math. Math. Phys., 56 (2016), 1102–1117 | DOI | DOI | MR | Zbl

[11] V. A. Levin, V. V. Markov, “Initiation of detonation by concentrated release of energy”, Combust. Explos. Shock Waves, 11 (1975), 529–536 | DOI

[12] V. A. Levin, V. V. Markov, S. F. Osinkin, “Simulation of detonation initiation in a combustible mixture of gases by an electric discharge”, Sov. J. Chem. Phys., 3 (1985), 917–920

[13] V. A. Levin, V. V. Markov, S. F. Osinkin, “Direct initiation of detonation in a hydrogen–oxygen mixture diluted with nitrogen”, Fluid Dyn., 27 (1992), 873–876 | DOI

[14] V. A. Levin, V. V. Markov, S. F. Osinkin, “Initiation of detonation in hydrogen–air mixture by explosion of a spherical TNT charge”, Combust. Explos. Shock Waves, 31 (1995), 207–210 | DOI

[15] V. A. Levin, V. V. Markov, S. F. Osinkin, “Detonation wave reinitiation using a disintegrating shell”, Phys. Dokl., 42:1 (1997), 25–27

[16] V. A. Levin, V. V. Markov, S. F. Osinkin, “The effect of air interlayer on the shock initiation of detonation in a hydrogen–air mixture”, Proc. Steklov Inst. Math., 223 (1998), 131–138 | Zbl

[17] V. A. Levin, V. V. Markov, S. F. Osinkin, T. A. Zhuravskaya, “Determination of critical conditions for detonation initiation in a finite volume by a converging shock wave”, Combust. Explos. Shock Waves, 38 (2002), 693–699 | DOI

[18] V. A. Levin, V. V. Markov, T. A. Zhuravskaya, “Direct detonation initiation in a hydrogen–air mixture by a converging shock wave”, Khim. Fiz., 20:5 (2001), 26–30

[19] V. A. Levin, V. V. Markov, T. A. Zhuravskaya, S. F. Osinkin, “Nonlinear wave processes that occur during the initiation and propagation of gaseous detonation”, Proc. Steklov Inst. Math., 251 (2005), 192–205 | MR | Zbl

[20] V. A. Levin, V. V. Markov, T. A. Zhuravskaya, S. F. Osinkin, “Determination of critical conditions for the propagation of detonation waves in channels of complex shape”, Modern Problems in the Study of Fast Processes and Catastrophic Phenomena, On the Occasion of the 75th Birthday of V. P. Korobeinikov, ed. O. M. Belotserkovskii, Nauka, Moscow, 2007, 75–88 (in Russian)

[21] Levin V. A., Markov V. V., Zhuravskaya T. A., Osinkin S. F., “Initiation, propagation and stabilization of detonation in the supersonic gas flow”, Proc. Seventh Int. Symp. on Hazards, Prevention, and Migration of Industrial Explosions, ISHPMIE (St. Petersburg, July 7–11, 2008), v. 2, Torus Press, Moscow, 2008, 110–118

[22] Levin V. A., Markov V. V., Zhuravskaya T. A., Osinkin S. F., “Influence of obstacles on detonation wave propagation”, Deflagrative and detonative combustion, eds. G. Roy, S. Frolov, Torus Press, Moscow, 2010, 221–228

[23] V. V. Markov, “Numerical simulation of the formation of a multifrontal detonation-wave structure”, Sov. Phys. Dokl., 26 (1981), 503–505

[24] V. V. Mitrofanov, R. I. Soloukhin, “The diffraction of multifront detonation waves”, Sov. Phys. Dokl., 9 (1965), 1055–1058

[25] L. I. Sedov, V. P. Korobeĭnikov, V. V. Markov, “The theory of propagation of blast waves”, Proc. Steklov Inst. Math., 175 (1988), 187–228 | MR | Zbl

[26] R. I. Soloukhin, “Structure of a multifront detonation wave in a gas”, Combust. Explos. Shock Waves, 1:2 (1965), 23–29 | DOI

[27] L. V. Gurvich, I. V. Veyts (eds.), Thermodynamic Properties of Individual Substances, v. 1, Part 2, Hemisphere, New York, 1989

[28] Vl. Voevodin, S. Zhumatii, S. Sobolev, A. Antonov, P. Bryzgalov, D. Nikitenko, K. Stefanov, Vad. Voevodin, “Practice of the ‘Lomonosov’ Supercomputer”, Otkrytye Sistemy. SUBD, 2012, no. 7, 36–39

[29] Westbrook C. K., Dryer F. L., “Chemical kinetic modeling of hydrocarbon combustion”, Prog. Energy Combust. Sci., 10:1 (1984), 1–57 | DOI | MR

[30] T. A. Zhuravskaya, V. A. Levin, V. V. Markov, S. F. Osinkin, “Effect of the decomposing shell on the formation of detonation in a bounded volume by a converging shock wave”, Khim. Fiz., 22:8 (2003), 34–37