Shock waves in anisotropic cylinders
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Modern problems and methods in mechanics, Tome 300 (2018), pp. 109-122.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study small-amplitude longitudinal and torsional shock waves in circular cylinders consisting of an anisotropic medium such that the velocities of the longitudinal and torsional waves are close to each other. Previously, simple waves were considered in the same situation and conditions were found for these waves to overturn and for the corresponding shock waves to form. Here we present the study of shock waves: the shock adiabat and the evolutionary conditions. The results obtained can also be related to shock waves in unbounded media with quadratic nonlinearity.
@article{TM_2018_300_a7,
     author = {A. G. Kulikovskii and A. P. Chugainova},
     title = {Shock waves in anisotropic cylinders},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {109--122},
     publisher = {mathdoc},
     volume = {300},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2018_300_a7/}
}
TY  - JOUR
AU  - A. G. Kulikovskii
AU  - A. P. Chugainova
TI  - Shock waves in anisotropic cylinders
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2018
SP  - 109
EP  - 122
VL  - 300
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2018_300_a7/
LA  - ru
ID  - TM_2018_300_a7
ER  - 
%0 Journal Article
%A A. G. Kulikovskii
%A A. P. Chugainova
%T Shock waves in anisotropic cylinders
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2018
%P 109-122
%V 300
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2018_300_a7/
%G ru
%F TM_2018_300_a7
A. G. Kulikovskii; A. P. Chugainova. Shock waves in anisotropic cylinders. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Modern problems and methods in mechanics, Tome 300 (2018), pp. 109-122. http://geodesic.mathdoc.fr/item/TM_2018_300_a7/

[1] V. L. Berdichevsky, Variational Principles of Continuum Mechanics, v. I, Fundamentals, Springer, Berlin, 2009 ; v. II, Applications, Springer, Berlin, 2009 | MR | MR

[2] A. P. Chugainova, “Asymptotic behavior of nonlinear waves in elastic media with dispersion and dissipation”, Theor. Math. Phys., 147 (2006), 646–659 | DOI | DOI | MR | Zbl

[3] A. P. Chugainova, “Self-similar asymptotics of wave problems and the structures of non-classical discontinuities in non-linearly elastic media with dispersion and dissipation”, J. Appl. Math. Mech., 71 (2007), 701–711 | DOI | MR

[4] A. P. Chugainova, “Special discontinuities in nonlinearly elastic media”, Comput. Math. Math. Phys., 57 (2017), 1013–1021 | DOI | DOI | MR

[5] Chugainova A. P., Il'ichev A. T., Kulikovskii A. G., Shargatov V. A., “Problem of arbitrary discontinuity disintegration for the generalized Hopf equation: selection conditions for a unique solution”, IMA J. Appl. Math., 82:3 (2017), 496–525 | MR

[6] A. P. Chugainova, V. A. Shargatov, “Stability of discontinuity structures described by a generalized KdV–Burgers equation”, Comput. Math. Math. Phys., 56 (2016), 263–277 | DOI | DOI | MR | Zbl

[7] A. N. Druz', N. A. Polyakov, Yu. A. Ustinov, “Homogeneous solutions and Saint-Venant problems for a naturally twisted rod”, J. Appl. Math. Mech., 60 (1996), 657–664 | DOI | MR

[8] A. N. Druz', Yu. A. Ustinov, “Green's tensor for an elastic cylinder and its applications in the development of the Saint-Venant theory”, J. Appl. Math. Mech., 60 (1996), 97–104 | DOI | MR

[9] V. I. Erofeev, “Nonlinear flexural and torsional waves in rods and rod systems”, Vestn. Nauchn.-Tekh. Razvitiya, 2009, no. 4, 46–50 | MR

[10] V. I. Erofeev, N. V. Klyueva, “Propagation of nonlinear torsional waves in a beam made of a different-modulus material”, Mech. Solids, 38:5 (2003), 122–126

[11] M. F. Glushko, “Investigation of deformations and stresses in twisted ropes with real wire-contact conditions taken into account”, Izv. Vyssh. Uchebn. Zaved. Gornyi Zh., 1961, no. 11, 103–118

[12] Hanyga A., On the solution to the Riemann problem for arbitrary hyperbolic system of conservation laws, Publ. Inst. Geophys. Pol. Acad. Sci., A-1, Państw. Wydawn. Nauk., Warszawa, 1976

[13] A. T. Il'ichev, A. P. Chugainova, “Spectral stability theory of heteroclinic solutions to the Korteweg–de Vries–Burgers equation with an arbitrary potential”, Proc. Steklov Inst. Math., 295 (2016), 148–157 | DOI | DOI | MR

[14] A. G. Kulikovskii, “Properties of shock adiabats in the neighborhood of Jouguet points”, Fluid Dyn., 14 (1979), 317–320 | DOI

[15] A. G. Kulikovskii, A. P. Chugainova, “Simulation of the influence of small-scale dispersion processes in a continuum on the formation of large-scale phenomena”, Comput. Math. Math. Phys., 44 (2004), 1062–1068 | MR | Zbl

[16] A. G. Kulikovskii, A. P. Chugainova, “Classical and non-classical discontinuities in solutions of equations of non-linear elasticity theory”, Russ. Math. Surv., 63 (2008), 283–350 | DOI | DOI | MR | Zbl

[17] A. G. Kulikovskii, A. P. Chugainova, “On the steady-state structure of shock waves in elastic media and dielectrics”, J. Exp. Theor. Phys., 110:5 (2010), 851–862 | DOI

[18] A. G. Kulikovskii, A. P. Chugainova, “Shock waves in elastoplastic media with the structure defined by the stress relaxation process”, Proc. Steklov Inst. Math., 289 (2015), 167–182 | DOI | DOI | MR

[19] A. G. Kulikovskii, A. P. Chugainova, “A self-similar wave problem in a Prandtl–Reuss elastoplastic medium”, Proc. Steklov Inst. Math., 295 (2016), 179–189 | DOI | DOI | MR

[20] A. G. Kulikovskii, A. P. Chugainova, “Study of discontinuities in solutions of the Prandtl–Reuss elastoplasticity equations”, Comput. Math. Math. Phys., 56 (2016), 637–649 | DOI | DOI | MR | Zbl

[21] A. G. Kulikovskii, A. P. Chugainova, “Long nonlinear waves in anisotropic cylinders”, Comput. Math. Math. Phys., 57 (2017), 1194–1200 | DOI | DOI | MR

[22] A. G. Kulikovskii, A. P. Chugainova, V. A. Shargatov, “Uniqueness of self-similar solutions to the Riemann problem for the Hopf equation with complex nonlinearity”, Comput. Math. Math. Phys., 56 (2016), 1355–1362 | DOI | DOI | MR

[23] A. G. Kulikovskii, N. V. Pogorelov, A. Yu. Semenov, Mathematical Aspects of Numerical Solution of Hyperbolic Systems, Chapman Hall/CRC, Boca Raton, FL, 2001 | MR | MR

[24] A. G. Kulikovskii, E. I. Sveshnikova, “On shock wave propagation in stressed isotropic nonlinearly elastic media”, J. Appl. Math. Mech., 44 (1980), 367–374 | DOI | MR

[25] A. G. Kulikovskii, E. I. Sveshnikova, “Investigation of the shock adiabat of quasitransverse shock waves in a prestressed elastic medium”, J. Appl. Math. Mech., 46 (1982), 667–673 | DOI

[26] A. G. Kulikovskii, E. I. Sveshnikova, “A selfsimilar problem on the action of a sudden load on the boundary of an elastic half-space”, J. Appl. Math. Mech., 49 (1985), 214–220 | DOI | MR

[27] A. G. Kulikovskii, E. I. Sveshnikova, Nonlinear Waves in Elastic Media, CRC, Boca Raton, FL, 1995 | MR

[28] L. D. Landau, E. M. Lifshits, Course of Theoretical Physics, v. 6, Fluid Mechanics, Pergamon, Oxford, 1987 | MR

[29] Lax P. D., “Hyperbolic systems of conservation laws. II”, Commun. Pure Appl. Math., 10 (1957), 537–566 | DOI | MR

[30] A. A. Malashin, “Longitudinal, transverse, and torsion waves and oscillations in musical strings”, Dokl. Phys., 54:1 (2009), 43–46 | DOI | MR

[31] Yu. N. Rabotnov, Mechanics of a Deformable Solid, Nauka, Moscow, 1988 (in Russian)

[32] Kh. A. Rakhmatulin, K. A. Adylov, “Normal transverse impact against spiral wire cables”, Vestn. Mosk. Univ. Ser. 1: Mat., Mekh., 1976, no. 6, 105–108

[33] G. N. Savin, “Equations of motion of a naturally twisted thread of variable length”, Dokl. Akad. Nauk Ukr. SSR, 1960, no. 6, 726–730

[34] L. I. Sedov, Mechanics of Continuous Media, v. 1, World Sci., River Edge, NJ, 1997 | MR | MR

[35] E. I. Sveshnikova, “Riemann waves in an elastic medium with small cubic anisotropy”, J. Appl. Math. Mech., 69 (2005), 71–78 | DOI | MR

[36] E. I. Sveshnikova, “Shock waves in an elastic medium with cubic anisotropy”, J. Appl. Math. Mech., 70 (2006), 611–620 | DOI | MR

[37] Yu. A. Ustinov, Saint-Venant Problems for Pseudocylinders, Fizmatlit, Moscow, 2003 (in Russian)