Problem of the motion of an elastic medium formed at the solidification front
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Modern problems and methods in mechanics, Tome 300 (2018), pp. 95-108.

Voir la notice de l'article provenant de la source Math-Net.Ru

The following self-similar problem is considered. At the initial instant of time, a phase transformation front starts moving at constant velocity from a certain plane (which will be called a wall or a piston, depending on whether it is assumed to be fixed or movable); at this front, an elastic medium is formed as a result of solidification from a medium without tangential stresses. On the wall, boundary conditions are defined for the components of velocity, stress, or strain. Behind the solidification front, plane nonlinear elastic waves can propagate in the medium formed, provided that the velocities of these waves are less than the velocity of the front. The medium formed is assumed to be incompressible, weakly nonlinear, and with low anisotropy. Under these assumptions, the solution of the self-similar problem is described qualitatively for arbitrary parameters appearing in the statement of the problem. The study is based on the authors' previous investigation of solidification fronts whose structure is described by the Kelvin–Voigt model of a viscoelastic medium.
@article{TM_2018_300_a6,
     author = {A. G. Kulikovskii and E. I. Sveshnikova},
     title = {Problem of the motion of an elastic medium formed at the solidification front},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {95--108},
     publisher = {mathdoc},
     volume = {300},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2018_300_a6/}
}
TY  - JOUR
AU  - A. G. Kulikovskii
AU  - E. I. Sveshnikova
TI  - Problem of the motion of an elastic medium formed at the solidification front
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2018
SP  - 95
EP  - 108
VL  - 300
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2018_300_a6/
LA  - ru
ID  - TM_2018_300_a6
ER  - 
%0 Journal Article
%A A. G. Kulikovskii
%A E. I. Sveshnikova
%T Problem of the motion of an elastic medium formed at the solidification front
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2018
%P 95-108
%V 300
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2018_300_a6/
%G ru
%F TM_2018_300_a6
A. G. Kulikovskii; E. I. Sveshnikova. Problem of the motion of an elastic medium formed at the solidification front. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Modern problems and methods in mechanics, Tome 300 (2018), pp. 95-108. http://geodesic.mathdoc.fr/item/TM_2018_300_a6/

[1] N. Kh. Arutyunyan, A. V. Manzhirov, Contact Problems in Creep Theory, Akad. Nauk Arm. SSR, Yerevan, 1990 (in Russian)

[2] A. A. Barmin, A. G. Kulikovskii, Ionization and recombination fronts in an electromagnetic field, Rep. JPRS-56500, Joint Publ. Res. Serv., Washington, 1972

[3] A. P. Chugainova, “Special discontinuities in nonlinearly elastic media”, Comput. Math. Math. Phys., 57 (2017), 1013–1021 | DOI | MR

[4] A. G. Kulikovskii, “Surfaces of discontinuity separating two perfect media of different properties. Recombination waves in magnetohydrodynamics”, J. Appl. Math. Mech., 32 (1968), 1145–1152 | DOI

[5] A. G. Kulikovskii, “Multi-parameter fronts of strong discontinuities in continuum mechanics”, J. Appl. Math. Mech., 75 (2011), 378–389 | DOI | MR

[6] A. G. Kulikovskii, A. P. Chugainova, “Classical and non-classical discontinuities in solutions of equations of non-linear elasticity theory”, Russ. Math. Surv., 63 (2008), 283–350 | DOI | DOI | MR | Zbl

[7] A. G. Kulikovskii, A. P. Chugainova, “Study of discontinuities in solutions of the Prandtl–Reuss elastoplasticity equations”, Comput. Math. Math. Phys., 56 (2016), 637–649 | DOI | DOI | MR | Zbl

[8] A. G. Kulikovskii, A. P. Chugainova, “A self-similar wave problem in a Prandtl–Reuss elastoplastic medium”, Proc. Steklov Inst. Math., 295 (2016), 179–189 | DOI | DOI | MR

[9] A. G. Kulikovskii, N. V. Pogorelov, A. Yu. Semenov, Mathematical Aspects of Numerical Solution of Hyperbolic Systems, Chapman Hall/CRC, Boca Raton, FL, 2001 | MR | MR

[10] A. G. Kulikovskii, E. I. Sveshnikova, “On shock wave propagation in stressed isotropic nonlinearly elastic media”, J. Appl. Math. Mech., 44 (1980), 367–374 | DOI | MR

[11] A. G. Kulikovskii, E. I. Sveshnikova, “A selfsimilar problem on the action of a sudden load on the boundary of an elastic half-space”, J. Appl. Math. Mech., 49 (1985), 214–220 | DOI | MR

[12] A. G. Kulikovskii, E. I. Sveshnikova, “Nonlinear waves arising under the variation of stresses on the boundary of an elastic half-space”, Problems in Nonlinear Continuum Mechanics, Valgus, Tallinn, 1985, 133–145 (in Russian)

[13] A. G. Kulikovskii, E. I. Sveshnikova, “Non-linear waves in slightly anisotropic elastic media”, J. Appl. Math. Mech., 52 (1988), 90–93 | DOI | MR

[14] A. G. Kulikovskii, E. I. Sveshnikova, Nonlinear Waves in Elastic Media, CRC, Boca Raton, FL, 1995 | MR

[15] A. G. Kulikovskii, E. I. Sveshnikova, “The formation of an anisotropic elastic medium on the compaction front of a stream of particles”, J. Appl. Math. Mech., 79 (2015), 521–530 | DOI | MR

[16] A. G. Kulikovskii, E. I. Sveshnikova, “Formation fronts of a nonlinear elastic medium from a medium without shear stresses”, Moscow Univ. Mech. Bull., 72 (2017), 59–65 | DOI

[17] L. D. Landau, E. M. Lifshits, Course of Theoretical Physics, v. 6, Fluid Mechanics, Pergamon, Oxford, 1987 | MR

[18] E. I. Sveshnikova, “Simple waves in nonlinearly elastic media”, J. Appl. Math. Mech., 46 (1982), 509–512 | DOI

[19] Ya. B. Zel'dovich, G. I. Barenblatt, V. B. Librovich, G. M. Makhviladze, The Mathematical Theory of Combustion and Explosions, Consultants Bureau [Plenum], New York, 1985 | MR | MR