Unsteady flows in deformable pipes: the energy conservation law
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Modern problems and methods in mechanics, Tome 300 (2018), pp. 76-85

Voir la notice de l'article provenant de la source Math-Net.Ru

We derive a quasi-one-dimensional energy equation that corresponds to the flow of a compressible viscous fluid in a deformable pipeline. To describe the flow of such a fluid in a pipeline, we couple this equation with the previously derived continuity and momentum equations as well as with the equations of state for the internal energies of the fluid, the pipe deformations, pressure, and the cross-sectional area of the pipe. The derivation of the equations is based on averaging over the pipeline cross section. The equations obtained are designed for numerical simulations of long-distance transportation of a compressible fluid.
@article{TM_2018_300_a4,
     author = {A. T. Il'ichev and S. I. Sumskoi and V. A. Shargatov},
     title = {Unsteady flows in deformable pipes: the energy conservation law},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {76--85},
     publisher = {mathdoc},
     volume = {300},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2018_300_a4/}
}
TY  - JOUR
AU  - A. T. Il'ichev
AU  - S. I. Sumskoi
AU  - V. A. Shargatov
TI  - Unsteady flows in deformable pipes: the energy conservation law
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2018
SP  - 76
EP  - 85
VL  - 300
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2018_300_a4/
LA  - ru
ID  - TM_2018_300_a4
ER  - 
%0 Journal Article
%A A. T. Il'ichev
%A S. I. Sumskoi
%A V. A. Shargatov
%T Unsteady flows in deformable pipes: the energy conservation law
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2018
%P 76-85
%V 300
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2018_300_a4/
%G ru
%F TM_2018_300_a4
A. T. Il'ichev; S. I. Sumskoi; V. A. Shargatov. Unsteady flows in deformable pipes: the energy conservation law. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Modern problems and methods in mechanics, Tome 300 (2018), pp. 76-85. http://geodesic.mathdoc.fr/item/TM_2018_300_a4/