On the Voitkunskii--Amfilokhiev--Pavlovskii model of motion of aqueous polymer solutions
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Modern problems and methods in mechanics, Tome 300 (2018), pp. 176-189.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the mathematical properties of the model of motion of aqueous polymer solutions (Voitkunskii, Amfilokhiev, Pavlovskii, 1970) and its modifications in the limiting case of small relaxation times (Pavlovskii, 1971). In both cases, we examine plane unsteady laminar flows. In the first case, the properties of the flows are similar to those of the flow of an ordinary viscous fluid. In the second case, there may exist weak discontinuities that are preserved during the motion. We also address the steady flow problem for a dilute aqueous polymer solution moving in a cylindrical tube under a longitudinal pressure gradient. In this case, a flow with rectilinear trajectories (an analog of the classical Poiseuille flow) is possible. However, in contrast to the latter, the pressure in this flow depends on all three spatial variables.
@article{TM_2018_300_a13,
     author = {V. V. Pukhnachev and O. A. Frolovskaya},
     title = {On the {Voitkunskii--Amfilokhiev--Pavlovskii} model of motion of aqueous polymer solutions},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {176--189},
     publisher = {mathdoc},
     volume = {300},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2018_300_a13/}
}
TY  - JOUR
AU  - V. V. Pukhnachev
AU  - O. A. Frolovskaya
TI  - On the Voitkunskii--Amfilokhiev--Pavlovskii model of motion of aqueous polymer solutions
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2018
SP  - 176
EP  - 189
VL  - 300
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2018_300_a13/
LA  - ru
ID  - TM_2018_300_a13
ER  - 
%0 Journal Article
%A V. V. Pukhnachev
%A O. A. Frolovskaya
%T On the Voitkunskii--Amfilokhiev--Pavlovskii model of motion of aqueous polymer solutions
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2018
%P 176-189
%V 300
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2018_300_a13/
%G ru
%F TM_2018_300_a13
V. V. Pukhnachev; O. A. Frolovskaya. On the Voitkunskii--Amfilokhiev--Pavlovskii model of motion of aqueous polymer solutions. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Modern problems and methods in mechanics, Tome 300 (2018), pp. 176-189. http://geodesic.mathdoc.fr/item/TM_2018_300_a13/

[1] V. B. Amfilokhiev, V. A. Pavlovskii, “Experimental data on laminar-turbulent transition for flows of polymer solutions in pipes”, Tr. Leningr. Korablestr. Inst., 104, 1975, 3–5

[2] V. B. Amfilokhiev, Ya. V. Voitkunskii, N. P. Mazaeva, Ya. S. Khodorkovskii, “Flows of polymer solutions in the presence of convective accelerations”, Tr. Leningr. Korablestr. Inst., 96, 1975, 3–9

[3] R. A. Apakashev, V. V. Pavlov, “Determination of the shear strength and modulus of water at low flow velocities”, Fluid Dyn., 32 (1997), 1–4 | DOI

[4] G. Astarita, G. Marrucci, Principles of Non-Newtonian Fluid Mechanics, McGraw-Hill, London 1974

[5] G. I. Barenblatt, V. N. Kalashnikov, “Effect of high-molecular formations on turbulence in dilute polymer solutions”, Fluid Dyn., 3:3 (1968), 45–48 | DOI

[6] Barnes H. A., Townsend P., Walters K., “Flow of non-Newtonian liquids under a varying pressure gradient”, Nature, 224:5219 (1969), 585–587 | DOI

[7] Barnes H. A., Walters K., “Flow of elastic liquids through curved pipes”, Nature, 216:5113 (1967), 366–367 | DOI

[8] Yu. D. Bozhkov, V. V. Pukhnachev, “Group analysis of equations of motion of aqueous solutions of polymers”, Dokl. Phys., 60:2 (2015), 77–80 | DOI | MR

[9] Bozhkov Yu. D., Pukhnachev V. V., Pukhnacheva T. P., “Mathematical models of polymer solutions motion and their symmetries”, AIP Conf. Proc., 1684 (2015), 020001 | DOI

[10] Frolovskaya O. A., “Numerical investigation of unsteady axisymmetric stagnation point flow”, AIP Conf. Proc., 1684 (2015), 070001 | DOI

[11] O. A. Frolovskaya, “Unsteady self-similar viscous flow near a stagnation point”, J. Appl. Mech. Tech. Phys., 57 (2016), 391–395 | DOI | MR

[12] Galaktionov V. A., Svirshchevskii S. R., Exact solutions and invariant subspaces of nonlinear partial differential equations in mechanics and physics, Chapman Hall/CRS, Boca Raton, FL, 2007 | MR

[13] Gupta M. K., Metzner A. B., Hartnett S. P., “Turbulent heat-transfer characteristics of viscoelastic fluids”, Int. J. Heat Mass Transf., 10:9 (1967), 1211–1224 | DOI

[14] A. M. Il'in, A. R. Danilin, Asymptotic Methods in Analysis, Fizmatlit, Moscow, 2009 (in Russian)

[15] A. E. Korenchenko, V. P. Beskachko, “Determining the shear modulus of water in experiments with a floating disk”, J. Appl. Mech. Tech. Phys., 49 (2008), 80–83 | DOI

[16] V. V. Kuznetsov, V. V. Pukhnachev, “A new family of exact solutions of Navier–Stokes equations”, Dokl. Phys., 54:3 (2009), 126–130 | DOI | MR

[17] O. A. Ladyzhenskaya, V. A. Solonnikov, N. N. Ural'tseva, Linear and Quasi-linear Equations of Parabolic Type, Am. Math. Soc., Providence, RI, 1968 | MR

[18] V. Yu. Liapidevskii, V. V. Pukhnachev, “Hyperbolic submodels of an incompressible viscoelastic Maxwell medium”, Proc. Steklov Inst. Math., 281 (2013), 77–90 | DOI | DOI | MR

[19] A. P. Oskolkov, “On the uniqueness and global solvability of boundary-value problems for the equations of motion of aqueous solutions of polymers”, Zap. Nauchn. Semin. LOMI, 38, 1973, 98–136 | MR | Zbl

[20] A. P. Oskolkov, “Theory of nonstationary flows of Kelvin–Voigt fluids”, J. Sov. Math., 28:5 (1985), 751–758 | DOI | MR | Zbl

[21] A. P. Oskolkov, “Initial boundary-value problems with a free surface condition for the modified Navier–Stokes equations”, J. Math. Sci., 84:1 (1997), 873–887 | DOI | MR | Zbl | Zbl

[22] V. A. Pavlovskii, “Theoretical description of weak aqueous polymer solutions”, Sov. Phys. Dokl., 16 (1972), 853–855

[23] A. G. Petrova, V. V. Pukhnachev, O. A. Frolovskaya, “Analytical and numerical investigation of unsteady flow near a critical point”, J. Appl. Math. Mech., 80 (2016), 215–224 | DOI | MR

[24] Pisolkar V. G., “Effect of drag reducing additives on pressure loss across transitions”, Nature, 225:5236 (1970), 936–937 | DOI

[25] T. P. Pukhnacheva, “Problem of axially symmetric flow of an aqueous polymer solution near the critical point”, Proc. Semin. on Geometry and Mathematical Modeling, 2, Altaisk. Gos. Univ., Barnaul, 2016, 75–80 (in Russian)

[26] Rouse P. E. (Jr.), “A theory of the linear viscoelastic properties of dilute solutions of coiling polymers”, J. Chem. Phys., 21:7 (1953), 1272–1280 | DOI

[27] Shlikhting G., Teoriya pogranichnogo sloya, Nauka, M., 1974; H. Schlichting, Grenzschicht-Theorie, G. Braun, Karlsruhe, 1965 ; Boundary-Layer Theory, McGraw-Hill, New York, 1979 | MR

[28] B. N. Semenov, “Friction-reducing injection of polymer solutions into a flow”, Sib. Fiz.-Tekh. Zh., 1991, no. 4, 99–108

[29] Toms B. A., “Some observations on the flow of linear polymer solutions through straight tubes at large Reynolds numbers”, Proc. First Int. Congr. on Rheology (1948), v. 2, North-Holland, Amsterdam, 1949, 135–141

[30] Ya. I. Voitkunskii, V. B. Amfilokhiev, V. A. Pavlovskii, “Equations of motion of a fluid, with its relaxation properties taken into account”, Tr. Leningr. Korablestr. Inst., 69, 1970, 19–26

[31] A. V. Zvyagin, “Analysis of the solvability of a stationary model of motion of weak aqueous polymer solutions”, Vestn. Voronezh. Gos. Univ. Ser. Fiz. Mat., 2011, no. 1, 147–156

[32] Zvyagin A. V., “Solvability for equations of motion of weak aqueous polymer solutions with objective derivative”, Nonlinear Anal. Theory Methods Appl., 90 (2013), 70–85 | DOI | MR

[33] V. G. Zvyagin, M. V. Turbin, Mathematical Problems of Hydrodynamics of Viscoelastic Media, Krasand, Moscow, 2012 (in Russian)