Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2018_300_a13, author = {V. V. Pukhnachev and O. A. Frolovskaya}, title = {On the {Voitkunskii--Amfilokhiev--Pavlovskii} model of motion of aqueous polymer solutions}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {176--189}, publisher = {mathdoc}, volume = {300}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2018_300_a13/} }
TY - JOUR AU - V. V. Pukhnachev AU - O. A. Frolovskaya TI - On the Voitkunskii--Amfilokhiev--Pavlovskii model of motion of aqueous polymer solutions JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2018 SP - 176 EP - 189 VL - 300 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2018_300_a13/ LA - ru ID - TM_2018_300_a13 ER -
%0 Journal Article %A V. V. Pukhnachev %A O. A. Frolovskaya %T On the Voitkunskii--Amfilokhiev--Pavlovskii model of motion of aqueous polymer solutions %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2018 %P 176-189 %V 300 %I mathdoc %U http://geodesic.mathdoc.fr/item/TM_2018_300_a13/ %G ru %F TM_2018_300_a13
V. V. Pukhnachev; O. A. Frolovskaya. On the Voitkunskii--Amfilokhiev--Pavlovskii model of motion of aqueous polymer solutions. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Modern problems and methods in mechanics, Tome 300 (2018), pp. 176-189. http://geodesic.mathdoc.fr/item/TM_2018_300_a13/
[1] V. B. Amfilokhiev, V. A. Pavlovskii, “Experimental data on laminar-turbulent transition for flows of polymer solutions in pipes”, Tr. Leningr. Korablestr. Inst., 104, 1975, 3–5
[2] V. B. Amfilokhiev, Ya. V. Voitkunskii, N. P. Mazaeva, Ya. S. Khodorkovskii, “Flows of polymer solutions in the presence of convective accelerations”, Tr. Leningr. Korablestr. Inst., 96, 1975, 3–9
[3] R. A. Apakashev, V. V. Pavlov, “Determination of the shear strength and modulus of water at low flow velocities”, Fluid Dyn., 32 (1997), 1–4 | DOI
[4] G. Astarita, G. Marrucci, Principles of Non-Newtonian Fluid Mechanics, McGraw-Hill, London 1974
[5] G. I. Barenblatt, V. N. Kalashnikov, “Effect of high-molecular formations on turbulence in dilute polymer solutions”, Fluid Dyn., 3:3 (1968), 45–48 | DOI
[6] Barnes H. A., Townsend P., Walters K., “Flow of non-Newtonian liquids under a varying pressure gradient”, Nature, 224:5219 (1969), 585–587 | DOI
[7] Barnes H. A., Walters K., “Flow of elastic liquids through curved pipes”, Nature, 216:5113 (1967), 366–367 | DOI
[8] Yu. D. Bozhkov, V. V. Pukhnachev, “Group analysis of equations of motion of aqueous solutions of polymers”, Dokl. Phys., 60:2 (2015), 77–80 | DOI | MR
[9] Bozhkov Yu. D., Pukhnachev V. V., Pukhnacheva T. P., “Mathematical models of polymer solutions motion and their symmetries”, AIP Conf. Proc., 1684 (2015), 020001 | DOI
[10] Frolovskaya O. A., “Numerical investigation of unsteady axisymmetric stagnation point flow”, AIP Conf. Proc., 1684 (2015), 070001 | DOI
[11] O. A. Frolovskaya, “Unsteady self-similar viscous flow near a stagnation point”, J. Appl. Mech. Tech. Phys., 57 (2016), 391–395 | DOI | MR
[12] Galaktionov V. A., Svirshchevskii S. R., Exact solutions and invariant subspaces of nonlinear partial differential equations in mechanics and physics, Chapman Hall/CRS, Boca Raton, FL, 2007 | MR
[13] Gupta M. K., Metzner A. B., Hartnett S. P., “Turbulent heat-transfer characteristics of viscoelastic fluids”, Int. J. Heat Mass Transf., 10:9 (1967), 1211–1224 | DOI
[14] A. M. Il'in, A. R. Danilin, Asymptotic Methods in Analysis, Fizmatlit, Moscow, 2009 (in Russian)
[15] A. E. Korenchenko, V. P. Beskachko, “Determining the shear modulus of water in experiments with a floating disk”, J. Appl. Mech. Tech. Phys., 49 (2008), 80–83 | DOI
[16] V. V. Kuznetsov, V. V. Pukhnachev, “A new family of exact solutions of Navier–Stokes equations”, Dokl. Phys., 54:3 (2009), 126–130 | DOI | MR
[17] O. A. Ladyzhenskaya, V. A. Solonnikov, N. N. Ural'tseva, Linear and Quasi-linear Equations of Parabolic Type, Am. Math. Soc., Providence, RI, 1968 | MR
[18] V. Yu. Liapidevskii, V. V. Pukhnachev, “Hyperbolic submodels of an incompressible viscoelastic Maxwell medium”, Proc. Steklov Inst. Math., 281 (2013), 77–90 | DOI | DOI | MR
[19] A. P. Oskolkov, “On the uniqueness and global solvability of boundary-value problems for the equations of motion of aqueous solutions of polymers”, Zap. Nauchn. Semin. LOMI, 38, 1973, 98–136 | MR | Zbl
[20] A. P. Oskolkov, “Theory of nonstationary flows of Kelvin–Voigt fluids”, J. Sov. Math., 28:5 (1985), 751–758 | DOI | MR | Zbl
[21] A. P. Oskolkov, “Initial boundary-value problems with a free surface condition for the modified Navier–Stokes equations”, J. Math. Sci., 84:1 (1997), 873–887 | DOI | MR | Zbl | Zbl
[22] V. A. Pavlovskii, “Theoretical description of weak aqueous polymer solutions”, Sov. Phys. Dokl., 16 (1972), 853–855
[23] A. G. Petrova, V. V. Pukhnachev, O. A. Frolovskaya, “Analytical and numerical investigation of unsteady flow near a critical point”, J. Appl. Math. Mech., 80 (2016), 215–224 | DOI | MR
[24] Pisolkar V. G., “Effect of drag reducing additives on pressure loss across transitions”, Nature, 225:5236 (1970), 936–937 | DOI
[25] T. P. Pukhnacheva, “Problem of axially symmetric flow of an aqueous polymer solution near the critical point”, Proc. Semin. on Geometry and Mathematical Modeling, 2, Altaisk. Gos. Univ., Barnaul, 2016, 75–80 (in Russian)
[26] Rouse P. E. (Jr.), “A theory of the linear viscoelastic properties of dilute solutions of coiling polymers”, J. Chem. Phys., 21:7 (1953), 1272–1280 | DOI
[27] Shlikhting G., Teoriya pogranichnogo sloya, Nauka, M., 1974; H. Schlichting, Grenzschicht-Theorie, G. Braun, Karlsruhe, 1965 ; Boundary-Layer Theory, McGraw-Hill, New York, 1979 | MR
[28] B. N. Semenov, “Friction-reducing injection of polymer solutions into a flow”, Sib. Fiz.-Tekh. Zh., 1991, no. 4, 99–108
[29] Toms B. A., “Some observations on the flow of linear polymer solutions through straight tubes at large Reynolds numbers”, Proc. First Int. Congr. on Rheology (1948), v. 2, North-Holland, Amsterdam, 1949, 135–141
[30] Ya. I. Voitkunskii, V. B. Amfilokhiev, V. A. Pavlovskii, “Equations of motion of a fluid, with its relaxation properties taken into account”, Tr. Leningr. Korablestr. Inst., 69, 1970, 19–26
[31] A. V. Zvyagin, “Analysis of the solvability of a stationary model of motion of weak aqueous polymer solutions”, Vestn. Voronezh. Gos. Univ. Ser. Fiz. Mat., 2011, no. 1, 147–156
[32] Zvyagin A. V., “Solvability for equations of motion of weak aqueous polymer solutions with objective derivative”, Nonlinear Anal. Theory Methods Appl., 90 (2013), 70–85 | DOI | MR
[33] V. G. Zvyagin, M. V. Turbin, Mathematical Problems of Hydrodynamics of Viscoelastic Media, Krasand, Moscow, 2012 (in Russian)