Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2018_300_a11, author = {N. I. Makarenko and Z. V. Makridin}, title = {Periodic oscillations and waves in nonlinear weakly coupled dispersive systems}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {158--167}, publisher = {mathdoc}, volume = {300}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2018_300_a11/} }
TY - JOUR AU - N. I. Makarenko AU - Z. V. Makridin TI - Periodic oscillations and waves in nonlinear weakly coupled dispersive systems JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2018 SP - 158 EP - 167 VL - 300 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2018_300_a11/ LA - ru ID - TM_2018_300_a11 ER -
%0 Journal Article %A N. I. Makarenko %A Z. V. Makridin %T Periodic oscillations and waves in nonlinear weakly coupled dispersive systems %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2018 %P 158-167 %V 300 %I mathdoc %U http://geodesic.mathdoc.fr/item/TM_2018_300_a11/ %G ru %F TM_2018_300_a11
N. I. Makarenko; Z. V. Makridin. Periodic oscillations and waves in nonlinear weakly coupled dispersive systems. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Modern problems and methods in mechanics, Tome 300 (2018), pp. 158-167. http://geodesic.mathdoc.fr/item/TM_2018_300_a11/
[1] A. D. Bryuno, “The normal form of a system close to a Hamiltonian system”, Math. Notes, 48 (1990), 1100–1108 | DOI | MR | Zbl
[2] Gear J. A., Grimshaw R., “Weak and strong interactions between internal solitary waves”, Stud. Appl. Math., 70:3 (1984), 235–258 | DOI | MR
[3] A. T. Il'ichev, Solitary Waves in Hydromechanical Models, Fizmatlit, Moscow, 2003 (in Russian)
[4] L. G. Kurakin, V. I. Yudovich, “Application of the Lyapunov–Schmidt method to the problem of the branching of a cycle from a family of equilibria in a system with multicosymmetry”, Sib. Math. J., 41 (2000), 114–124 | DOI | MR | Zbl
[5] Littman W., “On the existence of periodic waves near critical speed”, Commun. Pure Appl. Math., 10:2 (1957), 241–269 | DOI | MR
[6] B. V. Loginov, “Branching Theory for the Solutions of Nonlinear Equations under Conditions of Group Invariance”, Fan, Tashkent, 1985 (in Russian) | MR
[7] B. V. Loginov, I. V. Konopleva, Yu. B. Rusak, “Symmetry and potentiality in the general problem of the branching theory”, Russ. Math., 50:4 (2006), 28–38 | MR | Zbl
[8] B. V. Loginov, V. A. Trenogin, “The use of group properties to determine multi-parameter families of solutions of nonlinear equations”, Math. USSR Sb., 14:3 (1971), 438–452 | DOI | MR | Zbl
[9] N. I. Makarenko, “On the bifurcation of solutions to invariant variational equations”, Dokl. Math., 53:3 (1996), 369–371 | MR
[10] I. G. Malkin, The Methods of Lyapunov and Poincaré in the Theory of Nonlinear Oscillations, URSS, Moscow, 2004 (in Russian) | MR
[11] V. K. Mel'nikov, “On the stability of the center for time-periodic perturbations”, Trans. Moscow Math. Soc., 12, 1963, 1–56 | MR | Zbl
[12] Mielke A., Hamiltonian and Lagrangian flows on center manifolds: With applications to elliptic variational problems, Lect. Notes Math., 1489, Springer, Berlin, 1991 | DOI | MR
[13] L. S. Pontryagin, “On dynamical systems close to Hamiltonian systems”, Zh. Eksp. Teor. Fiz., 4:9 (1934), 883–885
[14] A. M. Ter-Krikorov, “The existence of periodic waves which degenerate into a solitary wave”, J. Appl. Math. Mech., 24 (1961), 930–949 | DOI
[15] M. M. Vainberg, V. A. Trenogin, Theory of branching of solutions of non-linear equations, Noordhoff Int. Publ., Leyden, 1974 | MR | MR
[16] Vanderbauwhede A., “Lyapunov–Schmidt method for dynamical systems”, Encyclopedia of complexity and systems science, Springer, New York, 2009, 5299–5315 | DOI | MR
[17] Wright J. D., Scheel A., “Solitary waves and their linear stability in weakly coupled KdV equations”, Z. angew. Math. Phys., 58:4 (2007), 535–570 | DOI | MR
[18] V. I. Yudovich, “Cosymmetry, degeneration of solutions of operator equations, and onset of a filtration convection”, Math. Notes, 49 (1991), 540–545 | DOI | MR | Zbl
[19] V. I. Yudovich, “Implicit function theorem for cosymmetric equations”, Math. Notes, 60 (1996), 235–238 | DOI | DOI | MR | Zbl