Symmetries of fundamental solutions and their application in continuum mechanics
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Modern problems and methods in mechanics, Tome 300 (2018), pp. 7-18.

Voir la notice de l'article provenant de la source Math-Net.Ru

An application of the symmetries of fundamental solutions in continuum mechanics is presented. It is shown that the Riemann function of a second-order linear hyperbolic equation in two independent variables is invariant with respect to the symmetries of fundamental solutions, and a method is proposed for constructing such a function. A fourth-order linear elliptic partial differential equation is considered that describes the displacements of a transversely isotropic linear elastic medium. The symmetries of this equation and the symmetries of the fundamental solutions are found. The symmetries of the fundamental solutions are used to construct an invariant fundamental solution in terms of elementary functions.
@article{TM_2018_300_a0,
     author = {A. V. Aksenov},
     title = {Symmetries of fundamental solutions and their application in continuum mechanics},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {7--18},
     publisher = {mathdoc},
     volume = {300},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2018_300_a0/}
}
TY  - JOUR
AU  - A. V. Aksenov
TI  - Symmetries of fundamental solutions and their application in continuum mechanics
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2018
SP  - 7
EP  - 18
VL  - 300
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2018_300_a0/
LA  - ru
ID  - TM_2018_300_a0
ER  - 
%0 Journal Article
%A A. V. Aksenov
%T Symmetries of fundamental solutions and their application in continuum mechanics
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2018
%P 7-18
%V 300
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2018_300_a0/
%G ru
%F TM_2018_300_a0
A. V. Aksenov. Symmetries of fundamental solutions and their application in continuum mechanics. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Modern problems and methods in mechanics, Tome 300 (2018), pp. 7-18. http://geodesic.mathdoc.fr/item/TM_2018_300_a0/

[1] A. V. Aksenov, “Symmetries of linear partial differential equations and fundamental solutions”, Dokl. Math., 51:3 (1995), 329–331 | MR

[2] A. V. Aksenov, “Exact solutions describing one-dimensional isentropic flow of a polytropic gas”, Proc. Steklov Inst. Math., 223 (1998), 143–148 | MR | Zbl

[3] A. V. Aksenov, “Symmetries and invariant solutions of absolutely unstable media equations”, Phys. At. Nucl., 63 (2000), 677–679 | DOI | MR

[4] A. V. Aksenov, “Development of periodic perturbations in absolutely unstable media”, Nonlinearity in Modern Natural Science, LKI, Moscow, 2009, 134–151 (in Russian)

[5] A. V. Aksenov, “Nonlinear periodic waves in a gas”, Fluid Dyn., 47 (2012), 636–646 | DOI | MR

[6] Bluman G., “Simplifying the form of Lie groups admitted by a given differential equation”, J. Math. Anal. Appl., 145:1 (1990), 52–62 | DOI | MR

[7] Copson E. T., “On the Riemann–Green function”, Arch. Ration. Mech. Anal., 1 (1958), 324–348 | DOI | MR

[8] R. Courant, K. O. Friedrichs, Supersonic Flow and Shock Waves, Interscience, New York, 1948 | MR

[9] D. V. Georgievskii, “An extended Galerkin representation for a transversely isotropic linearly elastic medium”, J. Appl. Math. Mech., 79 (2015), 618–621 | DOI | MR

[10] J. Hadamard, Le problème de Cauchy et les équations aux dérivées partielles linéaires hyperboliques, Hermann, Paris, 1932 | MR

[11] N. Kh. Ibragimov, “Group analysis of ordinary differential equations and the invariance principle in mathematical physics (on the 150th anniversary of Sophus Lie)”, Russ. Math. Surv., 47:4 (1992), 89–156 | DOI | MR | Zbl

[12] L. V. Ovsiannikov, “Group properties of S. A. Chaplygin's equation”, Prikl. Mekh. Tekh. Fiz., 1960, no. 3, 126–145

[13] L. V. Ovsiannikov, Group Analysis of Differential Equations, Academic, New York, 1982 | MR | MR

[14] B. Riemann, Ueber die Fortpflanzung ebener Luftwellen von endlicher Schwingungsweite, Abh. König. Ges. Wiss. Gött., 8, Dieterichischen Buchhandlung, Göttingen, 1860

[15] V. S. Vladimirov, Generalized Functions in Mathematical Physics, Mir, Moscow, 1979 | MR | MR

[16] S. K. Zhdanov, B. A. Trubnikov, Quasi-gas Unstable Media, Nauka, Moscow, 1991 (in Russian)