On a Diophantine inequality with reciprocals
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Analytic number theory, Tome 299 (2017), pp. 144-154

Voir la notice de l'article provenant de la source Math-Net.Ru

A sharpened lower bound is obtained for the number of solutions to an inequality of the form $\alpha \le \{(a\overline {n}+bn)/q\}\beta $, $1\le n\le N$, where $q$ is a sufficiently large prime number, $a$ and $b$ are integers with $(ab,q)=1$, $n\overline {n}\equiv 1 \pmod q$, and $0\le \alpha \beta \le 1$. The length $N$ of the range of the variable $n$ is of order $q^\varepsilon $, where $\varepsilon >0$ is an arbitrarily small fixed number.
Mots-clés : inverse residues
Keywords: fractional parts, Kloosterman sums.
@article{TM_2017_299_a8,
     author = {M. A. Korolev},
     title = {On a {Diophantine} inequality with reciprocals},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {144--154},
     publisher = {mathdoc},
     volume = {299},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2017_299_a8/}
}
TY  - JOUR
AU  - M. A. Korolev
TI  - On a Diophantine inequality with reciprocals
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2017
SP  - 144
EP  - 154
VL  - 299
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2017_299_a8/
LA  - ru
ID  - TM_2017_299_a8
ER  - 
%0 Journal Article
%A M. A. Korolev
%T On a Diophantine inequality with reciprocals
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2017
%P 144-154
%V 299
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2017_299_a8/
%G ru
%F TM_2017_299_a8
M. A. Korolev. On a Diophantine inequality with reciprocals. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Analytic number theory, Tome 299 (2017), pp. 144-154. http://geodesic.mathdoc.fr/item/TM_2017_299_a8/