On a Diophantine inequality with reciprocals
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Analytic number theory, Tome 299 (2017), pp. 144-154
Voir la notice de l'article provenant de la source Math-Net.Ru
A sharpened lower bound is obtained for the number of solutions to an inequality of the form $\alpha \le \{(a\overline {n}+bn)/q\}\beta $, $1\le n\le N$, where $q$ is a sufficiently large prime number, $a$ and $b$ are integers with $(ab,q)=1$, $n\overline {n}\equiv 1 \pmod q$, and $0\le \alpha \beta \le 1$. The length $N$ of the range of the variable $n$ is of order $q^\varepsilon $, where $\varepsilon >0$ is an arbitrarily small fixed number.
Mots-clés :
inverse residues
Keywords: fractional parts, Kloosterman sums.
Keywords: fractional parts, Kloosterman sums.
@article{TM_2017_299_a8,
author = {M. A. Korolev},
title = {On a {Diophantine} inequality with reciprocals},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {144--154},
publisher = {mathdoc},
volume = {299},
year = {2017},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TM_2017_299_a8/}
}
M. A. Korolev. On a Diophantine inequality with reciprocals. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Analytic number theory, Tome 299 (2017), pp. 144-154. http://geodesic.mathdoc.fr/item/TM_2017_299_a8/