A few factors from the Euler product are sufficient for calculating the zeta function with high precision
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Analytic number theory, Tome 299 (2017), pp. 192-202

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper demonstrates by numerical examples a nontraditional way to get high precision values of Riemann's zeta function inside the critical strip by using the functional equation and the factors from the Euler product corresponding to a very small number of primes. For example, the three initial primes produce more than 50 correct decimal digits of $\zeta (1/4+10\kern 1pt\mathrm i)$.
Keywords: Riemann's zeta function, functional equation
Mots-clés : Euler product.
@article{TM_2017_299_a11,
     author = {Yu. V. Matiyasevich},
     title = {A few factors from the {Euler} product are sufficient for calculating the zeta function with high precision},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {192--202},
     publisher = {mathdoc},
     volume = {299},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2017_299_a11/}
}
TY  - JOUR
AU  - Yu. V. Matiyasevich
TI  - A few factors from the Euler product are sufficient for calculating the zeta function with high precision
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2017
SP  - 192
EP  - 202
VL  - 299
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2017_299_a11/
LA  - ru
ID  - TM_2017_299_a11
ER  - 
%0 Journal Article
%A Yu. V. Matiyasevich
%T A few factors from the Euler product are sufficient for calculating the zeta function with high precision
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2017
%P 192-202
%V 299
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2017_299_a11/
%G ru
%F TM_2017_299_a11
Yu. V. Matiyasevich. A few factors from the Euler product are sufficient for calculating the zeta function with high precision. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Analytic number theory, Tome 299 (2017), pp. 192-202. http://geodesic.mathdoc.fr/item/TM_2017_299_a11/