$C^1$ Approximation of Functions by Solutions of Second-Order Elliptic Systems on Compact Sets in $\mathbb R^2$
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Complex analysis and its applications, Tome 298 (2017), pp. 42-57.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the problems of $C^1$ approximation of functions by polynomial solutions and by solutions with localized singularities of homogeneous elliptic second-order systems of partial differential equations on compact subsets of the plane $\mathbb R^2$. We obtain a criterion of $C^1$-weak polynomial approximation which is analogous to Mergelyan's criterion of uniform approximability of functions by polynomials in the complex variable. We also discuss the problem of uniform approximation of functions by solutions of the above-mentioned systems. Moreover, we consider the Dirichlet problem for systems that are not strongly elliptic and prove a result on the lack of solvability of such problems for any continuous boundary data in domains whose boundaries contain analytic arcs.
Mots-clés : elliptic equation
Keywords: second-order elliptic system, uniform approximation, $C^1$ approximation, Vitushkin localization operator.
@article{TM_2017_298_a2,
     author = {A. O. Bagapsh and K. Yu. Fedorovskiy},
     title = {$C^1$ {Approximation} of {Functions} by {Solutions} of {Second-Order} {Elliptic} {Systems} on {Compact} {Sets} in $\mathbb R^2$},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {42--57},
     publisher = {mathdoc},
     volume = {298},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2017_298_a2/}
}
TY  - JOUR
AU  - A. O. Bagapsh
AU  - K. Yu. Fedorovskiy
TI  - $C^1$ Approximation of Functions by Solutions of Second-Order Elliptic Systems on Compact Sets in $\mathbb R^2$
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2017
SP  - 42
EP  - 57
VL  - 298
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2017_298_a2/
LA  - ru
ID  - TM_2017_298_a2
ER  - 
%0 Journal Article
%A A. O. Bagapsh
%A K. Yu. Fedorovskiy
%T $C^1$ Approximation of Functions by Solutions of Second-Order Elliptic Systems on Compact Sets in $\mathbb R^2$
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2017
%P 42-57
%V 298
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2017_298_a2/
%G ru
%F TM_2017_298_a2
A. O. Bagapsh; K. Yu. Fedorovskiy. $C^1$ Approximation of Functions by Solutions of Second-Order Elliptic Systems on Compact Sets in $\mathbb R^2$. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Complex analysis and its applications, Tome 298 (2017), pp. 42-57. http://geodesic.mathdoc.fr/item/TM_2017_298_a2/

[1] Carmona J. J., “Mergelyan's approximation theorem for rational modules”, J. Approx. Theory, 44:2 (1985), 113–126 | DOI | MR | Zbl

[2] Karmona D. D., Paramonov P. V., Fedorovskii K. Yu., “O ravnomernoi approksimatsii polianaliticheskimi mnogochlenami i zadache Dirikhle dlya bianaliticheskikh funktsii”, Mat. sb., 193:10 (2002), 75–98 | DOI | MR

[3] Hua L. K., Lin W., Wu C.-Q., Second-order systems of partial differential equations in the plane, Res. Notes Math., 128, Pitman Adv. Publ. Program, Boston, 1985 | MR | Zbl

[4] Mazalov M. Ya., “Kriterii ravnomernoi priblizhaemosti na proizvolnykh kompaktakh dlya reshenii ellipticheskikh uravnenii”, Mat. sb., 199:1 (2008), 15–46 | DOI | MR | Zbl

[5] Mazalov M. Ya., “O zadache Dirikhle dlya polianaliticheskikh funktsii”, Mat. sb., 200:10 (2009), 59–80 | DOI | Zbl

[6] Mazalov M. Ya., Paramonov P. V., Fedorovskii K. Yu., “Usloviya $C^m$-priblizhaemosti funktsii resheniyami ellipticheskikh uravnenii”, UMN, 67:6 (2012), 53–100 | DOI | MR | Zbl

[7] Paramonov P. V., “O garmonicheskikh approksimatsiyakh v $C^1$-norme”, Mat. sb., 181:10 (1990), 1341–1365 | Zbl

[8] Paramonov P. V., “O priblizheniyakh garmonicheskimi polinomami v $C^1$-norme na kompaktakh v $\mathbf R^2$”, Izv. RAN. Ser. mat., 57:2 (1993), 113–124 | Zbl

[9] Paramonov P. V., “$C^m$-priblizheniya garmonicheskimi polinomami na kompaktnykh mnozhestvakh v $\mathbb R^n$”, Mat. sb., 184:2 (1993), 105–128 | Zbl

[10] Paramonov P. V., Fedorovskii K. Yu., “O ravnomernoi i $C^1$-priblizhaemosti funktsii na kompaktakh v $\mathbb R^2$ resheniyami ellipticheskikh uravnenii vtorogo poryadka”, Mat. sb., 190:2 (1999), 123–144 | DOI | MR | Zbl

[11] Paramonov P. V., Verdera J., “Approximation by solutions of elliptic equations on closed subsets of Euclidean space”, Math. Scand., 74:2 (1994), 249–259 | DOI | MR | Zbl

[12] Petrovskii I. G., Lektsii ob uravneniyakh s chastnymi proizvodnymi, Nauka, M., 1961 | MR

[13] Verchota G. C., Vogel A. L., “Nonsymmetric systems on nonsmooth planar domains”, Trans. Amer. Math. Soc., 349:11 (1997), 4501–4535 | DOI | MR | Zbl

[14] Verdera J., “$C^m$ approximation by solutions of elliptic equations, and Calderón–Zygmund operators”, Duke Math. J., 55:1 (1987), 157–187 | DOI | MR | Zbl

[15] Verdera J., “On the uniform approximation problem for the square of the Cauchy–Riemann operator”, Pac. J. Math., 159:2 (1993), 379–396 | DOI | MR | Zbl

[16] Zaitsev A. B., “O ravnomernoi approksimatsii polinomialnymi resheniyami ellipticheskikh uravnenii vtorogo poryadka ios ootvetstvuyuschei zadache Dirikhle”, Tr. MIAN, 253, 2006, 67–80 | Zbl