Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2017_298_a2, author = {A. O. Bagapsh and K. Yu. Fedorovskiy}, title = {$C^1$ {Approximation} of {Functions} by {Solutions} of {Second-Order} {Elliptic} {Systems} on {Compact} {Sets} in $\mathbb R^2$}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {42--57}, publisher = {mathdoc}, volume = {298}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2017_298_a2/} }
TY - JOUR AU - A. O. Bagapsh AU - K. Yu. Fedorovskiy TI - $C^1$ Approximation of Functions by Solutions of Second-Order Elliptic Systems on Compact Sets in $\mathbb R^2$ JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2017 SP - 42 EP - 57 VL - 298 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2017_298_a2/ LA - ru ID - TM_2017_298_a2 ER -
%0 Journal Article %A A. O. Bagapsh %A K. Yu. Fedorovskiy %T $C^1$ Approximation of Functions by Solutions of Second-Order Elliptic Systems on Compact Sets in $\mathbb R^2$ %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2017 %P 42-57 %V 298 %I mathdoc %U http://geodesic.mathdoc.fr/item/TM_2017_298_a2/ %G ru %F TM_2017_298_a2
A. O. Bagapsh; K. Yu. Fedorovskiy. $C^1$ Approximation of Functions by Solutions of Second-Order Elliptic Systems on Compact Sets in $\mathbb R^2$. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Complex analysis and its applications, Tome 298 (2017), pp. 42-57. http://geodesic.mathdoc.fr/item/TM_2017_298_a2/
[1] Carmona J. J., “Mergelyan's approximation theorem for rational modules”, J. Approx. Theory, 44:2 (1985), 113–126 | DOI | MR | Zbl
[2] Karmona D. D., Paramonov P. V., Fedorovskii K. Yu., “O ravnomernoi approksimatsii polianaliticheskimi mnogochlenami i zadache Dirikhle dlya bianaliticheskikh funktsii”, Mat. sb., 193:10 (2002), 75–98 | DOI | MR
[3] Hua L. K., Lin W., Wu C.-Q., Second-order systems of partial differential equations in the plane, Res. Notes Math., 128, Pitman Adv. Publ. Program, Boston, 1985 | MR | Zbl
[4] Mazalov M. Ya., “Kriterii ravnomernoi priblizhaemosti na proizvolnykh kompaktakh dlya reshenii ellipticheskikh uravnenii”, Mat. sb., 199:1 (2008), 15–46 | DOI | MR | Zbl
[5] Mazalov M. Ya., “O zadache Dirikhle dlya polianaliticheskikh funktsii”, Mat. sb., 200:10 (2009), 59–80 | DOI | Zbl
[6] Mazalov M. Ya., Paramonov P. V., Fedorovskii K. Yu., “Usloviya $C^m$-priblizhaemosti funktsii resheniyami ellipticheskikh uravnenii”, UMN, 67:6 (2012), 53–100 | DOI | MR | Zbl
[7] Paramonov P. V., “O garmonicheskikh approksimatsiyakh v $C^1$-norme”, Mat. sb., 181:10 (1990), 1341–1365 | Zbl
[8] Paramonov P. V., “O priblizheniyakh garmonicheskimi polinomami v $C^1$-norme na kompaktakh v $\mathbf R^2$”, Izv. RAN. Ser. mat., 57:2 (1993), 113–124 | Zbl
[9] Paramonov P. V., “$C^m$-priblizheniya garmonicheskimi polinomami na kompaktnykh mnozhestvakh v $\mathbb R^n$”, Mat. sb., 184:2 (1993), 105–128 | Zbl
[10] Paramonov P. V., Fedorovskii K. Yu., “O ravnomernoi i $C^1$-priblizhaemosti funktsii na kompaktakh v $\mathbb R^2$ resheniyami ellipticheskikh uravnenii vtorogo poryadka”, Mat. sb., 190:2 (1999), 123–144 | DOI | MR | Zbl
[11] Paramonov P. V., Verdera J., “Approximation by solutions of elliptic equations on closed subsets of Euclidean space”, Math. Scand., 74:2 (1994), 249–259 | DOI | MR | Zbl
[12] Petrovskii I. G., Lektsii ob uravneniyakh s chastnymi proizvodnymi, Nauka, M., 1961 | MR
[13] Verchota G. C., Vogel A. L., “Nonsymmetric systems on nonsmooth planar domains”, Trans. Amer. Math. Soc., 349:11 (1997), 4501–4535 | DOI | MR | Zbl
[14] Verdera J., “$C^m$ approximation by solutions of elliptic equations, and Calderón–Zygmund operators”, Duke Math. J., 55:1 (1987), 157–187 | DOI | MR | Zbl
[15] Verdera J., “On the uniform approximation problem for the square of the Cauchy–Riemann operator”, Pac. J. Math., 159:2 (1993), 379–396 | DOI | MR | Zbl
[16] Zaitsev A. B., “O ravnomernoi approksimatsii polinomialnymi resheniyami ellipticheskikh uravnenii vtorogo poryadka ios ootvetstvuyuschei zadache Dirikhle”, Tr. MIAN, 253, 2006, 67–80 | Zbl