Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2017_297_a5, author = {L. J. D{\'\i}az and K. Gelfert and M. Rams}, title = {Topological and ergodic aspects of partially hyperbolic diffeomorphisms and nonhyperbolic step skew products}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {113--132}, publisher = {mathdoc}, volume = {297}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2017_297_a5/} }
TY - JOUR AU - L. J. Díaz AU - K. Gelfert AU - M. Rams TI - Topological and ergodic aspects of partially hyperbolic diffeomorphisms and nonhyperbolic step skew products JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2017 SP - 113 EP - 132 VL - 297 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2017_297_a5/ LA - ru ID - TM_2017_297_a5 ER -
%0 Journal Article %A L. J. Díaz %A K. Gelfert %A M. Rams %T Topological and ergodic aspects of partially hyperbolic diffeomorphisms and nonhyperbolic step skew products %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2017 %P 113-132 %V 297 %I mathdoc %U http://geodesic.mathdoc.fr/item/TM_2017_297_a5/ %G ru %F TM_2017_297_a5
L. J. Díaz; K. Gelfert; M. Rams. Topological and ergodic aspects of partially hyperbolic diffeomorphisms and nonhyperbolic step skew products. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Order and chaos in dynamical systems, Tome 297 (2017), pp. 113-132. http://geodesic.mathdoc.fr/item/TM_2017_297_a5/
[1] Abdenur F., Bonatti Ch., Crovisier S., “Nonuniform hyperbolicity for $C^1$-generic diffeomorphisms”, Isr. J. Math., 183 (2011), 1–60 | DOI | MR | Zbl
[2] Abraham R., Smale S., “Nongenericity of $\Omega $-stability”, Global analysis, Proc. Symp. Pure Math. (Univ. Calif., 1968), Proc. Symp. Pure Math., 14, Amer. Math. Soc., Providence, RI, 1970, 5–8 | DOI | MR
[3] Aoki N., “The set of axiom A diffeomorphisms with no cycles”, Bol. Soc. Bras. Mat. Nova Sér., 23 (1992), 21–65 | DOI | MR | Zbl
[4] Baladi V., Bonatti Ch., Schmitt B., “Abnormal escape rates from nonuniformly hyperbolic sets”, Ergodic Theory Dyn. Syst., 19:5 (1999), 1111–1125 | DOI | MR | Zbl
[5] Bochi J., Bonatti Ch., Díaz L. J., “Robust criterion for the existence of nonhyperbolic ergodic measures”, Commun. Math. Phys., 344:3 (2016), 751–795 | DOI | MR | Zbl
[6] Bonatti Ch., Díaz L. J., “Abundance of $C^1$-robust homoclinic tangencies”, Trans. Amer. Math. Soc., 364:10 (2012), 5111–5148 | DOI | MR | Zbl
[7] Bonatti Ch., Díaz L. J., Gorodetski A., “Non-hyperbolic ergodic measures with large support”, Nonlinearity, 23:3 (2010), 687–705 | DOI | MR | Zbl
[8] Bonatti Ch., Díaz L. J., Pujals E. R., Rocha J., “Robustly transitive sets and heterodimensional cycles”, Geometric methods in dynamics, v. 1, Astérisque, 286, Soc. math. France, Paris, 2003, 187–222 | MR | Zbl
[9] Bonatti Ch., Díaz L. J., Ures R., “Minimality of strong stable and unstable foliations for partially hyperbolic diffeomorphisms”, J. Inst. Math. Jussieu., 1:4 (2002), 513–541 | DOI | MR | Zbl
[10] Bonatti Ch., Díaz L. J., Viana M., Dynamics beyond uniform hyperbolicity: A global geometric and probabilistic perspective, Encycl. Math. Sci., 102, Math. Phys., 3, Springer, Berlin, 2005 | MR | Zbl
[11] Bonatti Ch., Gelfert K., Dominated Pesin theory: Convex sum of hyperbolic measures, E-print, 2015, arXiv: 1503.05901[math.DS]
[12] Bonatti Ch., Zhang J., Periodic measures and partially hyperbolic homoclinic classes, E-print, 2016, arXiv: 1609.08489[math.DS]
[13] Bowen R., “Periodic points and measures for Axiom A diffeomorphisms”, Trans. Amer. Math. Soc., 154 (1971), 377–397 | MR | Zbl
[14] Bowen R., “Entropy-expansive maps”, Trans. Amer. Math. Soc., 164 (1972), 323–331 | DOI | MR | Zbl
[15] Bowen R., “Topological entropy for noncompact sets”, Trans. Amer. Math. Soc., 184 (1973), 125–136 | DOI | MR
[16] Cao Y., Luzzatto S., Rios I., “Some non-hyperbolic systems with strictly non-zero Lyapunov exponents for all invariant measures: Horseshoes with internal tangencies”, Discrete Contin. Dyn. Syst., 15:1 (2006), 61–71 | DOI | MR | Zbl
[17] Cheng C., Crovisier S., Gan S., Wang X., Yang D., Hyperbolicity versus non-hyperbolic ergodic measures inside homoclinic classes, E-print, 2015, arXiv: 1507.08253[math.DS]
[18] Díaz L.J., Esteves S., Rocha J., “Skew product cycles with rich dynamics: From totally non-hyperbolic dynamics to fully prevalent hyperbolicity”, Dyn. Syst., 31:1 (2016), 1–40 | DOI | MR | Zbl
[19] Díaz L. J., Fisher T., Pacifico M. J., Vieitez J. L., “Entropy-expansiveness for partially hyperbolic diffeomorphisms”, Discrete Contin. Dyn. Syst., 32:12 (2012), 4195–4207 | DOI | MR | Zbl
[20] Díaz L. J., Gelfert K., “Porcupine-like horseshoes: Transitivity, Lyapunov spectrum, and phase transitions”, Fundam. math., 216 (2012), 55–100 | DOI | MR | Zbl
[21] Díaz L. J., Gelfert K., Rams M., “Abundant phase transitions in step-skew products”, Nonlinearity, 27:9 (2014), 2255–2280 | DOI | MR | Zbl
[22] Díaz L. J., Gelfert K., Rams M., “Nonhyperbolic step skew-products: Ergodic approximation”, Ann. Inst. Henri Poincaré. Anal. non linéaire, 2016 | DOI
[23] Díaz L. J., Gelfert K., Rams M., Nonhyperbolic step skew-products: Entropy spectrum of Lyapunov exponents, E-print, 2016, arXiv: 1610.07167[math.DS]
[24] Díaz L. J., Gorodetski A., “Non-hyperbolic ergodic measures for non-hyperbolic homoclinic classes”, Ergodic Theory Dyn. Syst., 29:5 (2009), 1479–1513 | DOI | MR | Zbl
[25] Díaz L. J., Horita V., Rios I., Sambarino M., “Destroying horseshoes via heterodimensional cycles: Generating bifurcations inside homoclinic classes”, Nonlinearity, 29:2 (2009), 433–474 | MR | Zbl
[26] Gelfert K., “Horseshoes for diffeomorphisms preserving hyperbolic measures”, Math. Z., 283:3–4 (2016), 685–701 | DOI | MR | Zbl
[27] Gelfert K., Kwietniak D., “On density of ergodic measures and generic points”, Ergodic Theory Dyn. Syst., 2016 | DOI
[28] Gogolev A., Tahzibi A., Center Lyapunov exponents in partially hyperbolic dynamics, E-print, 2013, arXiv: 1310.1985[math.DS] | MR
[29] Gorodetskii A. S., Ilyashenko Yu. S., “Nekotorye novye grubye svoistva invariantnykh mnozhestv i attraktorov dinamicheskikh sistem”, Funkts. analiz i ego pril., 33:2 (1999), 16–30 | DOI | MR | Zbl
[30] Gorodetskii A. S., Ilyashenko Yu. S., Kleptsyn V. A., Nalskii M. B., “Neustranimost nulevykh pokazatelei Lyapunova”, Funkts. analiz i ego pril., 39:1 (2005), 27–38 | DOI | MR | Zbl
[31] Gorodetski A., Pesin Ya., “Path connectedness and entropy density of the space of hyperbolic ergodic measures”, Modern theory of dynamical systems, A tribute to Dmitry Victorovich Anosov, Contemp. Math., 692, Amer. Math. Soc., Providence, RI, 2017, 111–121 | DOI | MR
[32] Hirsch M. W., Pugh C. C., Shub M., Invariant manifolds, Lect. Notes Math., 583, Springer, Berlin, 1977 | DOI | MR | Zbl
[33] Homburg A. J., Nassiri M., “Robust minimality of iterated function systems with two generators”, Ergodic Theory Dyn. Syst., 34:6 (2014), 1914–1929 | DOI | MR | Zbl
[34] Katok A., Hasselblatt B., Introduction to the modern theory of dynamical systems, Encycl. Math. Appl., 54, Cambridge Univ. Press, Cambridge, 1995 | MR | Zbl
[35] Kleptsyn V. A., Nalskii M. B., “Ustoichivost suschestvovaniya negiperbolicheskikh mer dlya $C^1$-diffeomorfizmov”, Funkts. analiz i ego pril., 41:4 (2007), 30–45 | DOI | MR | Zbl
[36] Kwietniak D., Łacka M., Feldman–Katok pseudometric and the GIKN construction of nonhyperbolic ergodic measures, E-print, 2017, arXiv: 1702.01962[math.DS]
[37] Leplaideur R., Oliveira K., Rios I., “Equilibrium states for partially hyperbolic horseshoes”, Ergodic Theory Dyn. Syst., 31:1 (2011), 179–195 | DOI | MR | Zbl
[38] Lindenstrauss J., Olsen G., Sternfeld Y., “The Poulsen simplex”, Ann. Inst. Fourier, 28:1 (1978), 91–114 | DOI | MR | Zbl
[39] Newhouse S. E., “Lectures on dynamical systems”, Dynamical systems, C.I.M.E. Lect. (Bressanone, 1978), Prog. Math., 8, Birkhäuser, Boston, 1980, 1–114 | MR
[40] Oseledets V. I., “Multiplikativnaya ergodicheskaya teorema. Kharakteristicheskie pokazateli Lyapunova dinamicheskikh sistem”, Tr. Mosk. mat. o-va, 19, 1968, 179–210 | MR | Zbl
[41] Palis J. (Jr.), de Melo W., Geometric theory of dynamical systems: An introduction, Springer, New York, 1982 | MR | Zbl
[42] Pesin Ya. B., “Kharakteristicheskie pokazateli Lyapunova i gladkaya ergodicheskaya teoriya”, UMN, 32:4 (1977), 55–112 | MR | Zbl
[43] Pfister C.-E., Sullivan W. G., “Large deviations estimates for dynamical systems without the specification property. Application to the $\beta$-shifts”, Nonlinearity, 18:1 (2005), 237–261 | DOI | MR | Zbl
[44] Poulsen E. T., “A simplex with dense extreme points”, Ann. Inst. Fourier, 11 (1961), 83–87 | DOI | MR | Zbl
[45] Rodriguez Hertz F., Rodriguez Hertz M. A., Tahzibi A., Ures R., “Maximizing measures for partially hyperbolic systems with compact center leaves”, Ergodic Theory Dyn. Syst., 32:2 (2012), 825–839 | DOI | MR | Zbl
[46] Rodriguez Hertz F., Rodriguez Hertz M. A., Ures R., “Some results on the integrability of the center bundle for partially hyperbolic diffeomorphisms”, Partially hyperbolic dynamics, laminations, and Teichmüller flow, Fields Inst. Commun., 51, Amer. Math. Soc., Providence, RI, 2007, 103–109 | MR | Zbl
[47] Shub M., Wilkinson A., “Pathological foliations and removable zero exponents”, Invent. math., 139:3 (2000), 495–508 | DOI | MR | Zbl
[48] Sigmund K., “Generic properties of invariant measures for Axiom $A$-diffeomorphisms”, Invent. math., 11:2 (1970), 99–109 | DOI | MR | Zbl
[49] Sigmund K., “On dynamical systems with the specification property”, Trans. Amer. Math. Soc., 190 (1974), 285–299 | DOI | MR | Zbl
[50] Sigmund K., “On the connectedness of ergodic systems”, Manuscr. math., 22 (1977), 27–32 | DOI | MR | Zbl
[51] Tahzibi A., Yang J., Strong hyperbolicity of ergodic measures with large entropy, E-print, 2016, arXiv: 1606.09429v1[math.DS]
[52] Walters P., An introduction to ergodic theory, Grad. Texts Math., 79, Springer, New York, 1982 | DOI | MR | Zbl