A Palm hierarchy for determinantal point processes with the Bessel kernel
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Order and chaos in dynamical systems, Tome 297 (2017), pp. 105-112.

Voir la notice de l'article provenant de la source Math-Net.Ru

The main result of this note shows that Palm distributions of the determinantal point process governed by the Bessel kernel with parameter $s$ are equivalent to the determinantal point process governed by the Bessel kernel with parameter $s+2$. The Radon–Nikodym derivative is explicitly computed as a multiplicative functional on the space of configurations.
@article{TM_2017_297_a4,
     author = {Alexander I. Bufetov},
     title = {A {Palm} hierarchy for determinantal point processes with the {Bessel} kernel},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {105--112},
     publisher = {mathdoc},
     volume = {297},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2017_297_a4/}
}
TY  - JOUR
AU  - Alexander I. Bufetov
TI  - A Palm hierarchy for determinantal point processes with the Bessel kernel
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2017
SP  - 105
EP  - 112
VL  - 297
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2017_297_a4/
LA  - ru
ID  - TM_2017_297_a4
ER  - 
%0 Journal Article
%A Alexander I. Bufetov
%T A Palm hierarchy for determinantal point processes with the Bessel kernel
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2017
%P 105-112
%V 297
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2017_297_a4/
%G ru
%F TM_2017_297_a4
Alexander I. Bufetov. A Palm hierarchy for determinantal point processes with the Bessel kernel. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Order and chaos in dynamical systems, Tome 297 (2017), pp. 105-112. http://geodesic.mathdoc.fr/item/TM_2017_297_a4/

[1] Abramowitz M., Stegun I. A., Handbook of mathematical functions with formulas, graphs, and mathematical tables, US Dept. Commerce. Natl. Bur. Stand. Appl. Math. Ser., 55, 10th print, U.S. Gov. Print. Off., Washington, D.C., 1972 ; Abramovits M., Stigan I., Spravochnik po spetsialnym funktsiyam s formulami, grafikami i matematicheskimi tablitsami, Nauka, M., 1979 | MR | MR

[2] Benjamini I., Lyons R., Peres Y., Schramm O., “Uniform spanning forests”, Ann. Probab., 29:1 (2001), 1–65 | MR | Zbl

[3] Borodin A., Okounkov A., Olshanski G., “Asymptotics of Plancherel measures for symmetric groups”, J. Amer. Math. Soc., 13:3 (2000), 481–515 | DOI | MR | Zbl

[4] Borodin A., Rains E. M., “Eynard–Mehta theorem, Schur process, and their Pfaffian analogs”, J. Stat. Phys., 121:3–4 (2005), 291–317 | DOI | MR | Zbl

[5] Bufetov A. I., “O multiplikativnykh funktsionalakh determinantnykh protsessov”, UMN, 67:1 (2012), 177–178 | DOI | MR | Zbl

[6] Bufetov A. I., “Infinite determinantal measures”, Electron. Res. Announc. Math. Sci., 20 (2013), 12–30 | MR | Zbl

[7] Bufetov A. I., Quasi-symmetries of determinantal point processes, E-print, 2014, arXiv: 1409.2068[math.PR]

[8] Bufetov A. I., “Beskonechnye determinantnye mery i ergodicheskoe razlozhenie beskonechnykh mer Pikrella. I: Postroenie beskonechnykh determinantnykh mer”, Izv. RAN. Ser. mat., 79:6 (2015), 18–64 | DOI | MR | Zbl

[9] Bufetov A. I., “O deistvii gruppy diffeomorfizmov na determinantnye mery”, UMN, 70:5 (2015), 175–176 | DOI | MR | Zbl

[10] Daley D. J., Vere-Jones D., An introduction to the theory of point processes, v. I, II, Springer, New York, 2008 | MR | Zbl

[11] Ghosh S., Determinantal processes and completeness of random exponentials: The critical case, E-print, 2012, arXiv: 1211.2435[math.PR] | MR

[12] Ghosh S., Rigidity and tolerance in Gaussian zeros and Ginibre eigenvalues: Quantitative estimates, E-print, 2012, arXiv: 1211.3506[math.PR]

[13] Ghosh S., Peres Y., Rigidity and tolerance in point processes: Gaussian zeros and Ginibre eigenvalues, E-print, 2012, arXiv: 1211.2381[math.PR] | MR

[14] Hough J. B., Krishnapur M., Peres Y., Virág B., “Determinantal processes and independence”, Probab. Surv., 3 (2006), 206–229 | DOI | MR | Zbl

[15] Its A. R., Izergin A. G., Korepin V. E., Slavnov N. A., “Differential equations for quantum correlation functions”, Int. J. Mod. Phys. B, 4:5 (1990), 1003–1037 | DOI | MR | Zbl

[16] Kallenberg O., Random measures, Akademie, Berlin, 1983 | MR | Zbl

[17] Lyons R., “Determinantal probability measures”, Publ. math. Inst. Hautes Étud. Sci., 98 (2003), 167–212 | DOI | MR | Zbl

[18] Olshanski G., “The quasi-invariance property for the gamma kernel determinantal measure”, Adv. Math., 226:3 (2011), 2305–2350 | DOI | MR | Zbl

[19] Shirai T., Takahashi Y., “Fermion process and Fredholm determinant”, Proc. Second ISAAC Congr. (Fukuoka, Japan, 1999), v. 1, Kluwer, Dordrecht, 2000, 15–23 | DOI | MR | Zbl

[20] Shirai T., Takahashi Y., “Random point fields associated with certain Fredholm determinants. I: Fermion, Poisson and boson point processes”, J. Funct. Anal., 205:2 (2003), 414–463 | DOI | MR | Zbl

[21] Shirai T., Takahashi Y., “Random point fields associated with certain Fredholm determinants. II: Fermion shifts and their ergodic and Gibbs properties”, Ann. Probab., 31:3 (2003), 1533–1564 | DOI | MR | Zbl

[22] Soshnikov A. B., “Determinantnye sluchainye tochechnye polya”, UMN, 55:5 (2000), 107–160 | DOI | MR | Zbl

[23] Tracy C. A., Widom H., “Level spacing distributions and the Bessel kernel”, Commun. Math. Phys., 161:2 (1994), 289–309 | DOI | MR | Zbl