On some simple examples of mechanical systems with hyperbolic chaos
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Order and chaos in dynamical systems, Tome 297 (2017), pp. 232-259.

Voir la notice de l'article provenant de la source Math-Net.Ru

Examples of mechanical systems with hyperbolic chaos are discussed, including the Thurston–Weeks–Hunt–MacKay hinge mechanism, in which conservative Anosov dynamics is realized, and dissipative systems with Smale–Williams type attractors (a particle on a plane under periodic kicks, interacting particles sliding on two alternately rotating disks, and a string with parametric excitation by modulated pump). The examples considered in the paper are interesting from the viewpoint of filling hyperbolic theory, as a well-developed field of the mathematical theory of dynamical systems, with physical content. The results of computer tests for hyperbolicity of the systems are presented that are based on the analysis of the statistics of intersection angles of stable and unstable manifolds.
@article{TM_2017_297_a12,
     author = {S. P. Kuznetsov and V. P. Kruglov},
     title = {On some simple examples of mechanical systems with hyperbolic chaos},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {232--259},
     publisher = {mathdoc},
     volume = {297},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2017_297_a12/}
}
TY  - JOUR
AU  - S. P. Kuznetsov
AU  - V. P. Kruglov
TI  - On some simple examples of mechanical systems with hyperbolic chaos
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2017
SP  - 232
EP  - 259
VL  - 297
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2017_297_a12/
LA  - ru
ID  - TM_2017_297_a12
ER  - 
%0 Journal Article
%A S. P. Kuznetsov
%A V. P. Kruglov
%T On some simple examples of mechanical systems with hyperbolic chaos
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2017
%P 232-259
%V 297
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2017_297_a12/
%G ru
%F TM_2017_297_a12
S. P. Kuznetsov; V. P. Kruglov. On some simple examples of mechanical systems with hyperbolic chaos. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Order and chaos in dynamical systems, Tome 297 (2017), pp. 232-259. http://geodesic.mathdoc.fr/item/TM_2017_297_a12/

[1] Afraimovich V. S., Gonchenko S. V., Lerman L. M., Shilnikov A. L., Turaev D. V., “Scientific heritage of L. P. Shilnikov”, Regul. Chaotic Dyn., 19:4 (2014), 435–460 | DOI | MR | Zbl

[2] Afraimovich V., Hsu S.-B., Lectures on chaotic dynamical systems, International Press, Somerville, MA, 2003 | MR | Zbl

[3] Aleksandrov A. D., Netsvetaev N. Yu., Geometriya, Nauka, M., 1990 | MR

[4] Andronov A. A., Vitt A. A., Khaikin S. E., Teoriya kolebanii, Fizmatgiz, M., 1959 | MR

[5] Anishchenko V. S., Kopeikin A. S., Kurths J., Vadivasova T. E., Strelkova G. I., “Studying hyperbolicity in chaotic systems”, Phys. Lett. A, 270:6 (2000), 301–307 | DOI | MR | Zbl

[6] Anosov D. V., Geodezicheskie potoki na zamknutykh rimanovykh mnogoobraziyakh otritsatelnoi krivizny, Tr. MIAN, 90, Nauka, M., 1967 | MR | Zbl

[7] Anosov D. V., “Dinamicheskie sistemy v 60-e gody: giperbolicheskaya revolyutsiya”, Matematicheskie sobytiya XX veka, Fazis, M., 2003, 1–18

[8] Anosov D. V., Aranson S. Kh., Grines V. Z., Plykin R. V., Sataev E. A., Safonov A. V., Solodov V. V., Starkov A. N., Stepin A. M., Shlyachkov S. V., Dinamicheskie sistemy s giperbolicheskim povedeniem, Itogi nauki i tekhniki. Sovr. probl. matematiki. Fund. napr., 66, VINITI, M., 1991 | MR | MR | Zbl

[9] Balazs N. L., Voros A., “Chaos on the pseudosphere”, Phys. Rep., 143:3 (1986), 109–240 | DOI | MR

[10] Baptista M. S., “Cryptography with chaos”, Phys. Lett. A, 240:1–2 (1998), 50–54 | DOI | MR | Zbl

[11] Benettin G., Galgani L., Giorgilli A., Strelcyn J.-M., “Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. Part 1”, Meccanica, 15 (1980), 9–20 | DOI | Zbl

[12] Bernstein G. M., Lieberman M. A., “Secure random number generation using chaotic circuits”, IEEE Trans. Circuits Syst., 37:9 (1990), 1157–1164 | DOI | MR

[13] Bizyaev I. A., Borisov A. V., Kazakov A. O., “Dynamics of the Suslov problem in a gravitational field: Reversal and strange attractors”, Regul. Chaotic Dyn., 20:5 (2015), 605–626 ; Bizyaev I. A., Borisov A. V., Kazakov A. O., “Dinamika zadachi Suslova v pole tyazhesti: revers i strannye attraktory”, Nelineinaya dinamika, 12:2 (2016), 263–287 | DOI | MR | Zbl | MR

[14] Bollt E. M., Meiss J. D., “Targeting chaotic orbits to the Moon through recurrence”, Phys. Lett. A, 204:5–6 (1995), 373–378 | DOI

[15] Bonatti C., Díaz L. J., Viana M., Dynamics beyond uniform hyperbolicity: A global geometric and probabilistic perspective, Springer, Berlin, 2005 | MR | Zbl

[16] Borisov A. V., Kazakov A. O., Kuznetsov S. P., “Nelineinaya dinamika keltskogo kamnya: negolonomnaya model”, UFN, 184:5 (2014), 493–500 | DOI

[17] Borisov A. V., Mamaev I. S., “Strannye attraktory v dinamike keltskikh kamnei”, UFN, 173:4 (2003), 407–418 | DOI

[18] Dmitriev A. S., Efremova E. V., Maksimov N. A., Panas A. I., Generatsiya khaosa, Tekhnosfera, M., 2012

[19] Dmitriev A. S., Efremova E. V., Nikishov A. Yu., Panas A. I., “Generatory khaosa: ot vakuumnykh priborov do nanoskhem”, Radioelektronika. Nanosistemy. Inform. tekhnologii, 1:1–2 (2009), 6–22

[20] Dmitriev A. S., Panas A. I., Dinamicheskii khaos: Novye nositeli informatsii dlya sistem svyazi, Fizmatlit, M., 2002

[21] Drutarovský M., Galajda P., “A robust chaos-based true random number generator embedded in reconfigurable switched-capacitor hardware”, Radioengineering, 16:3 (2007), 120–127

[22] Farmer J. D., “Chaotic attractors of an infinite-dimensional dynamical system”, Physica D, 4:3 (1982), 366–393 | DOI | MR | Zbl

[23] Gantmakher F. R., Lektsii po analiticheskoi mekhanike, 3-e izd., Fizmatlit, M., 2005

[24] Gaponov-Grekhov A. V., Rabinovich M. I., “Problemy sovremennoi nelineinoi dinamiki”, Vestn. RAN, 67:7 (1997), 608–614 | MR

[25] Ginelli F., Poggi P., Turchi A., Chaté H., Livi R., Politi A., “Characterizing dynamics with covariant Lyapunov vectors”, Phys. Rev. Lett., 99:13 (2007), 130601 | DOI

[26] Goldstein H., Poole C. P., Safko J. L., Classical mechanics, 3rd ed., Addison-Wesley, San Francisco, 2001 | MR

[27] Gonchenko A. S., Gonchenko S. V., Kazakov A. O., “Richness of chaotic dynamics in nonholonomic models of a celtic stone”, Regul. Chaotic Dyn., 18:5 (2013), 521–538 | DOI | MR | Zbl

[28] Gritli H., Khraief N., Belghith S., “Chaos control in passive walking dynamics of a compass-gait model”, Commun. Nonlinear Sci. Numer. Simul., 18:8 (2013), 2048–2065 | DOI | MR | Zbl

[29] E. Schöll, H. G. Schuster (eds.), Handbook of chaos control, Wiley-VCH, Weinheim, 2008 | Zbl

[30] Hunt T. J., MacKay R. S., “Anosov parameter values for the triple linkage and a physical system with a uniformly chaotic attractor”, Nonlinearity, 16:4 (2003), 1499–1510 | DOI | MR | Zbl

[31] Isaeva O. B., Jalnine A. Yu., Kuznetsov S. P., “Arnold's cat map dynamics in a system of coupled nonautonomous van der Pol oscillators”, Phys. Rev. E, 74:4 (2006), 046207 | DOI

[32] Isaeva O. B., Kuznetsov A. S., Kuznetsov S. P., “Hyperbolic chaos of standing wave patterns generated parametrically by a modulated pump source”, Phys. Rev. E, 87:4 (2013), 040901 | DOI

[33] Isaeva O. B., Kuznetsov A. S., Kuznetsov S. P., “Giperbolicheskii khaos pri parametricheskikh kolebaniyakh struny”, Nelineinaya dinamika, 9:1 (2013), 3–10

[34] Zhalnin A. Yu., “Novaya skhema peredachi informatsii na osnove fazovoi modulyatsii nesuschego khaoticheskogo signala”, Izv. vuzov. Prikl. nelineinaya dinamika, 22:5 (2014), 3–12

[35] Jalnine A. Yu., “Hyperbolic and non-hyperbolic chaos in a pair of coupled alternately excited FitzHugh–Nagumo systems”, Commun. Nonlinear Sci. Numer. Simul., 23:1–3 (2015), 202–208 | DOI | MR | Zbl

[36] Kalitkin N. N., Chislennye metody, Nauka, M., 1978 | MR

[37] Kaplan J. L., Yorke J. A., “Chaotic behavior of multidimensional difference equations”, Functional differential equations and approximation of fixed points, Lect. Notes Math., 730, eds. H.-O. Peitgen, H.-O. Walther, Springer, Berlin, 1979, 204–227 | DOI | MR

[38] Katok A., Hasselblatt B., Introduction to the modern theory of dynamical systems, Cambridge Univ. Press, Cambridge, 1995 ; Katok A. B., Khasselblat B., Vvedenie v sovremennuyu teoriyu dinamicheskikh sistem, Faktorial, M., 1999 | MR | Zbl

[39] Kazaryan M. E., Kurs differentsialnoi geometrii (2001–2002), MTsNMO, M., 2002

[40] Koronovskii A. A., Moskalenko O. I., Khramov A. E., “O primenenii khaoticheskoi sinkhronizatsii dlya skrytoi peredachi informatsii”, UFN, 179:12 (2009), 1281–1310 | DOI

[41] Kourganoff M., Anosov geodesic flows, billiards and linkages, E-print, 2015, arXiv: 1503.04305[math.DS] | MR

[42] Kozlov V. V., “Topologicheskie prepyatstviya k integriruemosti naturalnykh mekhanicheskikh sistem”, DAN SSSR, 249:6 (1979), 1299–1302 | MR | Zbl

[43] Kruglov V. P., Kuznetsov A. S., Kuznetsov S. P., “Giperbolicheskii khaos v sistemakh s parametricheskim vozbuzhdeniem patternov stoyachikh voln”, Nelineinaya dinamika, 10:3 (2014), 265–277

[44] Kruglov V. P., Kuznetsov S. P., Pikovsky A., “Attractor of Smale–Williams type in an autonomous distributed system”, Regul. Chaotic Dyn., 19:4 (2014), 483–494 | DOI | MR | Zbl

[45] Kuptsov P. V., “Vychislenie pokazatelei Lyapunova dlya raspredelennykh sistem: preimuschestva i nedostatki razlichnykh chislennykh metodov”, Izv. vuzov. Prikl. nelineinaya dinamika, 18:5 (2010), 93–112 | Zbl

[46] Kuptsov P. V., “Fast numerical test of hyperbolic chaos”, Phys. Rev. E, 85:1 (2012), 015203 | DOI

[47] Kuptsov P. V., Kuznetsov S. P., Pikovsky A., “Hyperbolic chaos of Turing patterns”, Phys. Rev. Lett., 108:19 (2012), 194101 | DOI

[48] Kuznetsov A. P., Kuznetsov S. P., Ryskin N. M., Nelineinye kolebaniya, Fizmatlit, M., 2002

[49] Kuznetsov A. P., Migunova N. A., Sataev I. R., Sedova Yu. V., Turukina L. V., “From chaos to quasi-periodicity”, Regul. Chaotic Dyn., 20:2 (2015), 189–204 | DOI | MR | Zbl

[50] Kuznetsov S. P., Dinamicheskii khaos, Fizmatlit, M., 2001

[51] Kuznetsov S. P., “Example of a physical system with a hyperbolic attractor of the Smale–Williams type”, Phys. Rev. Lett., 95:14 (2005), 144101 | DOI

[52] Kuznetsov S. P., “Dinamicheskii khaos i odnorodno giperbolicheskie attraktory: ot matematiki k fizike”, UFN, 181:2 (2011), 121–149 | DOI

[53] Kuznetsov S. P., “Plykin type attractor in electronic device simulated in MULTISIM”, Chaos, 21:4 (2011), 043105 | DOI | Zbl

[54] Kuznetsov S. P., Hyperbolic chaos: A physicist's view, Springer, Berlin, 2012 | Zbl

[55] Kuznetsov S. P., Dinamicheskii khaos i giperbolicheskie attraktory: Ot matematiki k fizike, IKI, M.–Izhevsk, 2013 | MR

[56] Kuznetsov S. P., “Some mechanical systems manifesting robust chaos”, Nonlinear Dyn. Mob. Rob., 1:1 (2013), 3–22 | MR

[57] Kuznetsov S. P., “Plate falling in a fluid: Regular and chaotic dynamics of finite-dimensional models”, Regul. Chaotic Dyn., 20:3 (2015), 345–382 | DOI | MR | Zbl

[58] Kuznetsov S. P., “Hyperbolic chaos in self-oscillating systems based on mechanical triple linkage: Testing absence of tangencies of stable and unstable manifolds for phase trajectories”, Regul. Chaotic Dyn., 20:6 (2015), 649–666 ; Kuznetsov S. P., “Giperbolicheskii khaos v avtokolebatelnykh sistemakh na osnove troinogo sharnirnogo mekhanizma: Proverka otsutstviya kasanii ustoichivykh i neustoichivykh mnogoobrazii fazovykh traektorii”, Nelineinaya dinamika, 12:1 (2016), 121–143 | DOI | MR | Zbl | MR

[59] Kuznetsov S. P., “Khaos v sisteme trekh svyazannykh rotatorov: ot dinamiki Anosova k giperbolicheskomu attraktoru”, Izv. Saratov. un-ta. Nov. seriya. Fizika, 15:2 (2015), 5–17

[60] Kuznetsov S. P., From geodesic flow on a surface of negative curvature to electronic generator of robust chaos, E-print, 2016, arXiv: 1604.08048[nlin.CD] | MR

[61] Kuznetsov S. P., Pikovsky A., “Autonomous coupled oscillators with hyperbolic strange attractors”, Physica D, 232:2 (2007), 87–102 | DOI | MR | Zbl

[62] Kuznetsov S. P., Ponomarenko V. I., “O vozmozhnosti realizatsii strannogo attraktora tipa Smeila–Vilyamsa v radiotekhnicheskom generatore s zapazdyvaniem”, Pisma v zhurn. tekhn. fiziki, 34:18 (2008), 1–8

[63] Kuznetsov S. P., Sataev I. R., “Proverka uslovii giperbolichnosti khaoticheskogo attraktora v sisteme svyazannykh neavtonomnykh ostsillyatorov van der Polya”, Izv. vuzov. Prikl. nelineinaya dinamika, 14:5 (2006), 3–29 | Zbl

[64] Kuznetsov S. P., Sataev I. R., “Hyperbolic attractor in a system of coupled non-autonomous van der Pol oscillators: Numerical test for expanding and contracting cones”, Phys. Lett. A, 365:1–2 (2007), 97–104 | DOI | Zbl

[65] Kuznetsov C. P., Seleznev E. P., “Khaoticheskaya dinamika v fizicheskoi sisteme so strannym attraktorom tipa Smeila–Vilyamsa”, ZhETF, 129:2 (2006), 400–412

[66] Kuznetsov S. P., Tyuryukina L. V., “Attraktory tipa Smeila–Vilyamsa v modelnykh sistemakh s impulsnym periodicheskim vozdeistviem”, Izv. vuzov. Prikl. nelineinaya dinamika, 18:5 (2010), 80–92 | Zbl

[67] Lai Y.-C., Grebogi C., Yorke J. A., Kan I., “How often are chaotic saddles nonhyperbolic?”, Nonlinearity, 6:5 (1993), 779–798 | DOI | MR

[68] Letellier C., Chaos in nature, World Scientific, Hackensack, NJ, 2013 | Zbl

[69] Lukin K. A., “Noise radar technology”, Telecommun. Radio Eng., 55:12 (2001), 8–16 | DOI

[70] Magalhães M. L. S., Pollicott M., “Geometry and dynamics of planar linkages”, Commun. Math. Phys., 317:3 (2013), 615–634 | DOI | MR | Zbl

[71] Mandelshtam L. I., Polnoe sobranie trudov, v. 4, Lektsii po kolebaniyam (1930–1932), Izd-vo AN SSSR, M., 1955 | MR

[72] Monin A. S., “O prirode turbulentnosti”, UFN, 125:5 (1978), 97–122 | DOI

[73] Neimark Yu. I., Landa P. S., Stokhasticheskie i khaoticheskie kolebaniya, Nauka, M., 1987 | MR

[74] Pesin Ya. B., Lectures on partial hyperbolicity and stable ergodicity, Zurich Lect. Adv. Math., Eur. Math. Soc., Zürich, 2004 | MR | Zbl

[75] Ptitsyn N., Prilozhenie teorii determinirovannogo khaosa v kriptografii, Izd. MGTU im. N. E. Baumana, M., 2002

[76] Rowland D. R., “Parametric resonance and nonlinear string vibrations”, Amer. J. Phys., 72:6 (2004), 758–766 | DOI

[77] Schuster H. G., Just W., Deterministic chaos: An introduction, Wiley-VCH, Weinheim, 2005 | MR | Zbl

[78] Scott S. K., Chemical chaos, Clarendon Press, Oxford, 1993 | MR

[79] Shilnikov L. P., Shilnikov A. L., Turaev D. V., Chua L., Metody kachestvennoi teorii v nelineinoi dinamike, Ch. 1, In-t kompyut. issled., M.–Izhevsk, 2004

[80] Sinai Ya. G., “Stokhastichnost dinamicheskikh sistem”, Nelineinye volny, ed. A. V. Gaponov-Grekhov, Nauka, M., 1979, 192–212

[81] Smale S., “Differentiable dynamical systems”, Bull. Amer. Math. Soc., 73:6 (1967), 747–817 ; Smeil S., “Differentsiruemye dinamicheskie sistemy”, UMN, 25:1 (1970), 113–185 | DOI | MR | Zbl | MR

[82] Steingrube S., Timme M., Wörgötter F., Manoonpong P., “Self-organized adaptation of a simple neural circuit enables complex robot behaviour”, Nature Phys., 6:3 (2010), 224–230 | DOI

[83] Struik D. J., Lectures on classical differential geometry, Dover Publ., New York, 1988 | MR | Zbl

[84] Strett Dzh. V. (Lord Relei), Teoriya zvuka, v. 1, Gostekhizdat, M., 1955

[85] Thompson J. M. T., Stewart H. B., Nonlinear dynamics and chaos, J. Wiley Sons, Chichester, 1986 | MR | Zbl

[86] Thurston W. P., Weeks J. R., “The mathematics of three-dimensional manifolds”, Sci. Amer., 251:1 (1984), 108–120 | DOI | MR

[87] Tyuryukina L. V., “Giperbolicheskii khaos v sistemakh s impulsnym periodicheskim vozdeistviem”, Nelineinyi mir, 8:2 (2010), 72–73

[88] Wilczak D., “Uniformly hyperbolic attractor of the Smale–Williams type for a Poincaré map in the Kuznetsov system”, SIAM J. Appl. Dyn. Syst., 9:4 (2010), 1263–1283 | DOI | MR | Zbl

[89] Williams R. F., “Expanding attractors”, Publ. math. Inst. Hautes Étud. Sci., 43 (1974), 169–203 | DOI | MR