Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2017_297_a11, author = {Konstantin Khanin and Sa\v{s}a Koci\'c}, title = {On the smoothness of the conjugacy between circle maps with a~break}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {224--231}, publisher = {mathdoc}, volume = {297}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2017_297_a11/} }
TY - JOUR AU - Konstantin Khanin AU - Saša Kocić TI - On the smoothness of the conjugacy between circle maps with a~break JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2017 SP - 224 EP - 231 VL - 297 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2017_297_a11/ LA - ru ID - TM_2017_297_a11 ER -
Konstantin Khanin; Saša Kocić. On the smoothness of the conjugacy between circle maps with a~break. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Order and chaos in dynamical systems, Tome 297 (2017), pp. 224-231. http://geodesic.mathdoc.fr/item/TM_2017_297_a11/
[1] Arnold V. I., “Malye znamenateli. I: Ob otobrazheniyakh okruzhnosti na sebya”, Izv. AN SSSR. Ser. mat., 25:1 (1961), 21–86 | MR | Zbl
[2] Cunha K., Smania D., “Rigidity for piecewise smooth homeomorphisms on the circle”, Adv. Math., 250 (2014), 193–226 | DOI | MR | Zbl
[3] Herman M. R., “Sur la conjugaison différentiable des difféomorphismes du cercle à des rotations”, Publ. math. Inst. Hautes Étud. Sci., 49 (1979), 5–233 | DOI | MR | Zbl
[4] Katznelson Y., Ornstein D., “The differentiability of conjugation of certain diffeomorphisms of the circle”, Ergodic Theory Dyn. Syst., 9:4 (1989), 643–680 | MR | Zbl
[5] Khanin K., Kocić S., “Absence of robust rigidity for circle maps with breaks”, Ann. Inst. Henri Poincaré. Anal. non linéaire, 30:3 (2013), 385–399 | DOI | MR | Zbl
[6] Khanin K., Kocić S., “Renormalization conjecture and rigidity theory for circle diffeomorphisms with breaks”, Geom. Funct. Anal., 24:6 (2014), 2002–2028 | DOI | MR | Zbl
[7] Khanin K., Kocić S., “Rigidity for a class of generalized interval exchange transformations”, Dynamical systems, ergodic theory, and probability, In memory of Kolya Chernov, Contemp. Math., 698, Amer. Math. Soc., Providence, RI, 2017 (to appear); Preprint mp-arc 16-26, Univ. Texas Austin, Austin, TX, 2016
[8] Khanin K., Kocić S., Mazzeo E., “$C^1$-rigidity of circle diffeomorphisms with breaks for almost all rotation numbers”, Ann. sci. Éc. norm. supér., 50:5 (2017), 1163–1203
[9] Khanin K., Teplinsky A., “Herman's theory revisited”, Invent. math., 178:2 (2009), 333–344 | DOI | MR | Zbl
[10] Kocić S., “Generic rigidity for circle diffeomorphisms with breaks”, Commun. Math. Phys., 344:2 (2016), 427–445 | DOI | MR | Zbl
[11] Marmi S., Moussa P., Yoccoz J.-C., “Linearization of generalized interval exchange maps”, Ann. Math. Ser. 2, 176:3 (2012), 1583–1646 | DOI | MR | Zbl
[12] Sinai Ya. G., Khanin K. M., “Gladkost sopryazhenii diffeomorfizmov okruzhnosti s povorotami”, UMN, 44:1 (1989), 57–82 | MR | Zbl
[13] Yoccoz J.-C., “Conjugaison différentiable des difféomorphismes du cercle dont le nombre de rotation vérifie une condition diophantienne”, Ann. sci. Éc. norm. super. Sér. 4, 17 (1984), 333–359 | MR | Zbl