On the smoothness of the conjugacy between circle maps with a~break
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Order and chaos in dynamical systems, Tome 297 (2017), pp. 224-231.

Voir la notice de l'article provenant de la source Math-Net.Ru

For any $\alpha\in(0,1)$, $c\in\mathbb R_+\setminus\{1\}$ and $\gamma>0$ and for Lebesgue almost all irrational $\rho\in(0,1)$, any two $C^{2+\alpha}$-smooth circle diffeomorphisms with a break, with the same rotation number $\rho$ and the same size of the breaks $c$, are conjugate to each other via a $C^1$-smooth conjugacy whose derivative is uniformly continuous with modulus of continuity $\omega(x)=A|{\log x}|^{-\gamma}$ for some $A>0$.
@article{TM_2017_297_a11,
     author = {Konstantin Khanin and Sa\v{s}a Koci\'c},
     title = {On the smoothness of the conjugacy between circle maps with a~break},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {224--231},
     publisher = {mathdoc},
     volume = {297},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2017_297_a11/}
}
TY  - JOUR
AU  - Konstantin Khanin
AU  - Saša Kocić
TI  - On the smoothness of the conjugacy between circle maps with a~break
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2017
SP  - 224
EP  - 231
VL  - 297
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2017_297_a11/
LA  - ru
ID  - TM_2017_297_a11
ER  - 
%0 Journal Article
%A Konstantin Khanin
%A Saša Kocić
%T On the smoothness of the conjugacy between circle maps with a~break
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2017
%P 224-231
%V 297
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2017_297_a11/
%G ru
%F TM_2017_297_a11
Konstantin Khanin; Saša Kocić. On the smoothness of the conjugacy between circle maps with a~break. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Order and chaos in dynamical systems, Tome 297 (2017), pp. 224-231. http://geodesic.mathdoc.fr/item/TM_2017_297_a11/

[1] Arnold V. I., “Malye znamenateli. I: Ob otobrazheniyakh okruzhnosti na sebya”, Izv. AN SSSR. Ser. mat., 25:1 (1961), 21–86 | MR | Zbl

[2] Cunha K., Smania D., “Rigidity for piecewise smooth homeomorphisms on the circle”, Adv. Math., 250 (2014), 193–226 | DOI | MR | Zbl

[3] Herman M. R., “Sur la conjugaison différentiable des difféomorphismes du cercle à des rotations”, Publ. math. Inst. Hautes Étud. Sci., 49 (1979), 5–233 | DOI | MR | Zbl

[4] Katznelson Y., Ornstein D., “The differentiability of conjugation of certain diffeomorphisms of the circle”, Ergodic Theory Dyn. Syst., 9:4 (1989), 643–680 | MR | Zbl

[5] Khanin K., Kocić S., “Absence of robust rigidity for circle maps with breaks”, Ann. Inst. Henri Poincaré. Anal. non linéaire, 30:3 (2013), 385–399 | DOI | MR | Zbl

[6] Khanin K., Kocić S., “Renormalization conjecture and rigidity theory for circle diffeomorphisms with breaks”, Geom. Funct. Anal., 24:6 (2014), 2002–2028 | DOI | MR | Zbl

[7] Khanin K., Kocić S., “Rigidity for a class of generalized interval exchange transformations”, Dynamical systems, ergodic theory, and probability, In memory of Kolya Chernov, Contemp. Math., 698, Amer. Math. Soc., Providence, RI, 2017 (to appear); Preprint mp-arc 16-26, Univ. Texas Austin, Austin, TX, 2016

[8] Khanin K., Kocić S., Mazzeo E., “$C^1$-rigidity of circle diffeomorphisms with breaks for almost all rotation numbers”, Ann. sci. Éc. norm. supér., 50:5 (2017), 1163–1203

[9] Khanin K., Teplinsky A., “Herman's theory revisited”, Invent. math., 178:2 (2009), 333–344 | DOI | MR | Zbl

[10] Kocić S., “Generic rigidity for circle diffeomorphisms with breaks”, Commun. Math. Phys., 344:2 (2016), 427–445 | DOI | MR | Zbl

[11] Marmi S., Moussa P., Yoccoz J.-C., “Linearization of generalized interval exchange maps”, Ann. Math. Ser. 2, 176:3 (2012), 1583–1646 | DOI | MR | Zbl

[12] Sinai Ya. G., Khanin K. M., “Gladkost sopryazhenii diffeomorfizmov okruzhnosti s povorotami”, UMN, 44:1 (1989), 57–82 | MR | Zbl

[13] Yoccoz J.-C., “Conjugaison différentiable des difféomorphismes du cercle dont le nombre de rotation vérifie une condition diophantienne”, Ann. sci. Éc. norm. super. Sér. 4, 17 (1984), 333–359 | MR | Zbl