Erd\H os measures on the Euclidean space and on the group of $A$-adic integers
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Order and chaos in dynamical systems, Tome 297 (2017), pp. 38-45.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $A\in M_n(\mathbb Z)$ be a matrix with eigenvalues greater than $1$ in absolute value. The $\mathbb Z^n$-valued random variables $\xi_t$, $t\in\mathbb Z$, are i.i.d., and $P(\xi_t=j)=p_j$, $j\in\mathbb Z^n$, $0$, $\sum_j p_j=1$. We study the properties of the distributions of the $\mathbb R^n$-valued random variable $\zeta_1=\sum_{t=1}^\infty A^{-t}\xi_t$ and of the random variable $\zeta=\sum_{t=0}^\infty A^t\xi_{-t}$ taking integer $A$-adic values. We obtain a necessary and sufficient condition for the absolute continuity of these distributions. We define an invariant Erdős measure on the compact abelian group of $A$-adic integers. We also define an $A$-invariant Erdős measure on the $n$-dimensional torus. We show the connection between these invariant measures and functions of countable stationary Markov chains. In the case when $|\{j\colon p_j\ne 0\}|\infty$, we establish the relation between these invariant measures and finite stationary Markov chains.
@article{TM_2017_297_a1,
     author = {Z. I. Bezhaeva and V. L. Kulikov and E. F. Olekhova and V. I. Oseledets},
     title = {Erd\H os measures on the {Euclidean} space and on the group of $A$-adic integers},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {38--45},
     publisher = {mathdoc},
     volume = {297},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2017_297_a1/}
}
TY  - JOUR
AU  - Z. I. Bezhaeva
AU  - V. L. Kulikov
AU  - E. F. Olekhova
AU  - V. I. Oseledets
TI  - Erd\H os measures on the Euclidean space and on the group of $A$-adic integers
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2017
SP  - 38
EP  - 45
VL  - 297
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2017_297_a1/
LA  - ru
ID  - TM_2017_297_a1
ER  - 
%0 Journal Article
%A Z. I. Bezhaeva
%A V. L. Kulikov
%A E. F. Olekhova
%A V. I. Oseledets
%T Erd\H os measures on the Euclidean space and on the group of $A$-adic integers
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2017
%P 38-45
%V 297
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2017_297_a1/
%G ru
%F TM_2017_297_a1
Z. I. Bezhaeva; V. L. Kulikov; E. F. Olekhova; V. I. Oseledets. Erd\H os measures on the Euclidean space and on the group of $A$-adic integers. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Order and chaos in dynamical systems, Tome 297 (2017), pp. 38-45. http://geodesic.mathdoc.fr/item/TM_2017_297_a1/

[1] Deliu A., Spruill M. C., Dilation equations and absolute continuity of random expansions, School Math. Tech. Rep. 103194-025, Georgia Inst. Technol., Atlanta, GA, 1994

[2] Deliu A., Spruill M. C., “Existence results for refinement equations”, Aequationes math., 59:1–2 (2000), 20–37 | DOI | MR | Zbl

[3] Protasov V., “Refinement equations with nonnegative coefficients”, J. Fourier Anal. Appl., 6:1 (2000), 55–78 | DOI | MR | Zbl

[4] Tararukhin D. I., “Mera Erdësha na kompakte tselykh 2-adicheskikh chisel”, Obozr. prikl. i promyshl. matematiki, 15:4 (2008), 647–648

[5] Bezhaeva Z. I., Oseledets V. I., “Mery Erdësha, soficheskie mery i markovskie tsepi”, Zap. nauch. sem. POMI, 326, 2005, 28–47 | MR | Zbl

[6] Wang Y., “Self-affine tiles”, Advances in wavelets, ed. K.-S. Lau, Springer, Singapore, 1999, 261–282 | MR