Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2017_297_a0, author = {Pierre Berger}, title = {Emergence and non-typicality of the finiteness of the attractors in many topologies}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {7--37}, publisher = {mathdoc}, volume = {297}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2017_297_a0/} }
TY - JOUR AU - Pierre Berger TI - Emergence and non-typicality of the finiteness of the attractors in many topologies JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2017 SP - 7 EP - 37 VL - 297 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2017_297_a0/ LA - ru ID - TM_2017_297_a0 ER -
Pierre Berger. Emergence and non-typicality of the finiteness of the attractors in many topologies. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Order and chaos in dynamical systems, Tome 297 (2017), pp. 7-37. http://geodesic.mathdoc.fr/item/TM_2017_297_a0/
[1] Anosov D. V., Geodezicheskie potoki na zamknutykh rimanovykh mnogoobraziyakh otritsatelnoi krivizny, Tr. MIAN, 90, Nauka, M., 1967 | MR | Zbl
[2] Asaoka M., “Hyperbolic sets exhibiting $C^1$-persistent homoclinic tangency for higher dimensions”, Proc. Amer. Math. Soc., 136:2 (2008), 677–686 | DOI | MR | Zbl
[3] Benedicks M., Carleson L., “The dynamics of the Hénon map”, Ann. Math. Ser. 2, 133:1 (1991), 73–169 | DOI | MR | Zbl
[4] Benedicks M., Young L.-S., “Sinai–Bowen–Ruelle measures for certain Hénon maps”, Invent. math., 112:3 (1993), 541–576 | DOI | MR | Zbl
[5] Berger P., Abundance of non-uniformly hyperbolic Hénon like endomorphisms, E-print, 2009, arXiv: 0903.1473[math.DS]
[6] Berger P., “Generic family with robustly infinitely many sinks”, Invent. math., 205:1 (2016), 121–172 | DOI | MR | Zbl
[7] Berger P., Corrigendum to “Generic family with robustly infinitely many sinks”, Preprint, , Univ. Paris 13, 2016 https://www.math.univ-paris13.fr/~berger/Corrigendum.pdf
[8] Berger P., Crovisier S., Pujals E., “Iterated functions systems, blenders and parablenders”, Fractals and related fields III, Proc. Conf. (Île de Porquerolles, France, 2015) (to appear)
[9] Bonatti C., Díaz L. J., “Persistent nonhyperbolic transitive diffeomorphisms”, Ann. Math. Ser. 2, 143:2 (1996), 357–396 | DOI | MR | Zbl
[10] Bonatti C., Díaz L., “Connexions hétéroclines et généricité d'une infinité de puits et de sources”, Ann. sci. Éc. norm. supér. Sér. 4, 32:1 (1999), 135–150 | MR | Zbl
[11] Bonatti C., Díaz L. J., “On maximal transitive sets of generic diffeomorphisms”, Publ. math. Inst. Hautes Étud. Sci., 96 (2002), 171–197 | DOI | MR | Zbl
[12] Cobham A., “The intrinsic computational difficulty of functions”, Logic, methodology and philosophy of science, Proc. 1964 Int. Congr., North-Holland, Amsterdam, 1965, 24–30 | MR
[13] Díaz L. J., Nogueira A., Pujals E. R., “Heterodimensional tangencies”, Nonlinearity, 19:11 (2006), 2543–2566 | DOI | MR | Zbl
[14] Hénon M., “A two-dimensional mapping with a strange attractor”, Commun. Math. Phys., 50:1 (1976), 69–77 | DOI | MR
[15] Hofbauer F., Keller G., “Quadratic maps without asymptotic measure”, Commun. Math. Phys., 127:2 (1990), 319–337 | DOI | MR | Zbl
[16] Hunt B. R., Kaloshin V. Yu., “Prevalence”, Handbook of dynamical systems, v. 3, Elsevier, Amsterdam, 2010, 43–87 | Zbl
[17] Ilyashenko Yu., Li W., Nonlocal bifurcations, Math. Surv. Monogr., 66, Amer. Math. Soc., Providence, RI, 1999 | MR | Zbl
[18] Kiriki S., Soma T., Takens' last problem and existence of non-trivial wandering domains, E-print, 2015, arXiv: 1503.06258[math.DS] | MR
[19] Lorenz E. N., “Deterministic nonperiodic flow”, J. Atmos. Sci., 20 (1963), 130–141 | 2.0.CO;2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI
[20] Mora L., Viana M., “Abundance of strange attractors”, Acta math., 171:1 (1993), 1–71 | DOI | MR | Zbl
[21] Newhouse S. E., “Diffeomorphisms with infinitely many sinks”, Topology, 13 (1974), 9–18 | DOI | MR | Zbl
[22] Newhouse S. E., “Lectures on dynamical systems”, Dynamical systems, C.I.M.E. Lectures (Bressanone, 1978), Prog. Math., 8, Birkhäuser, Boston, 1980, 1–114 | MR
[23] Pugh C., Shub M., “Ergodic attractors”, Trans. Amer. Math. Soc., 312:1 (1989), 1–54 | DOI | MR | Zbl
[24] Pugh C., Shub M., “Stable ergodicity and partial hyperbolicity”, Int. Conf. on Dynamical Systems, A tribute to Ricardo Mañé (Montevideo, 1995), Pitman Res. Notes Math. Ser., 362, Longman, Harlow, 1996, 182–187 | MR | Zbl
[25] Smale S., “Differentiable dynamical systems”, Bull. Amer. Math. Soc., 73:6 (1967), 747–817 | DOI | MR | Zbl
[26] Takahasi H., “Abundance of non-uniform hyperbolicity in bifurcations of surface endomorphisms”, Tokyo J. Math., 34:1 (2011), 53–113 | DOI | MR | Zbl
[27] Turaev D., “Maps close to identity and universal maps in the Newhouse domain”, Commun. Math. Phys., 335:3 (2015), 1235–1277 | DOI | MR | Zbl
[28] Wang Q., Young L.-S., “Strange attractors with one direction of instability”, Commun. Math. Phys., 218:1 (2001), 1–97 | DOI | MR | Zbl
[29] Yoccoz J.-C., “Introduction to hyperbolic dynamics”, Real and complex dynamical systems, Proc. NATO Adv. Study Inst. (Hillerød, 1993), NATO ASI Ser. C: Math. Phys. Sci., 464, Kluwer, Dordrecht, 1995, 265–291 | MR | Zbl