Emergence and non-typicality of the finiteness of the attractors in many topologies
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Order and chaos in dynamical systems, Tome 297 (2017), pp. 7-37.

Voir la notice de l'article provenant de la source Math-Net.Ru

We introduce the notion of emergence for a dynamical system and conjecture the local typicality of super complex ones. Then, as part of this program, we provide sufficient conditions for an open set of $C^d$-families of $C^r$-dynamics to contain a Baire generic set formed by families displaying infinitely many sinks at every parameter, for all $1\le d\le r\le\infty$ and $d\infty$ and two different topologies on families. In particular, the case $d=r=1$ is new.
@article{TM_2017_297_a0,
     author = {Pierre Berger},
     title = {Emergence and non-typicality of the finiteness of the attractors in many topologies},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {7--37},
     publisher = {mathdoc},
     volume = {297},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2017_297_a0/}
}
TY  - JOUR
AU  - Pierre Berger
TI  - Emergence and non-typicality of the finiteness of the attractors in many topologies
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2017
SP  - 7
EP  - 37
VL  - 297
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2017_297_a0/
LA  - ru
ID  - TM_2017_297_a0
ER  - 
%0 Journal Article
%A Pierre Berger
%T Emergence and non-typicality of the finiteness of the attractors in many topologies
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2017
%P 7-37
%V 297
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2017_297_a0/
%G ru
%F TM_2017_297_a0
Pierre Berger. Emergence and non-typicality of the finiteness of the attractors in many topologies. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Order and chaos in dynamical systems, Tome 297 (2017), pp. 7-37. http://geodesic.mathdoc.fr/item/TM_2017_297_a0/

[1] Anosov D. V., Geodezicheskie potoki na zamknutykh rimanovykh mnogoobraziyakh otritsatelnoi krivizny, Tr. MIAN, 90, Nauka, M., 1967 | MR | Zbl

[2] Asaoka M., “Hyperbolic sets exhibiting $C^1$-persistent homoclinic tangency for higher dimensions”, Proc. Amer. Math. Soc., 136:2 (2008), 677–686 | DOI | MR | Zbl

[3] Benedicks M., Carleson L., “The dynamics of the Hénon map”, Ann. Math. Ser. 2, 133:1 (1991), 73–169 | DOI | MR | Zbl

[4] Benedicks M., Young L.-S., “Sinai–Bowen–Ruelle measures for certain Hénon maps”, Invent. math., 112:3 (1993), 541–576 | DOI | MR | Zbl

[5] Berger P., Abundance of non-uniformly hyperbolic Hénon like endomorphisms, E-print, 2009, arXiv: 0903.1473[math.DS]

[6] Berger P., “Generic family with robustly infinitely many sinks”, Invent. math., 205:1 (2016), 121–172 | DOI | MR | Zbl

[7] Berger P., Corrigendum to “Generic family with robustly infinitely many sinks”, Preprint, , Univ. Paris 13, 2016 https://www.math.univ-paris13.fr/~berger/Corrigendum.pdf

[8] Berger P., Crovisier S., Pujals E., “Iterated functions systems, blenders and parablenders”, Fractals and related fields III, Proc. Conf. (Île de Porquerolles, France, 2015) (to appear)

[9] Bonatti C., Díaz L. J., “Persistent nonhyperbolic transitive diffeomorphisms”, Ann. Math. Ser. 2, 143:2 (1996), 357–396 | DOI | MR | Zbl

[10] Bonatti C., Díaz L., “Connexions hétéroclines et généricité d'une infinité de puits et de sources”, Ann. sci. Éc. norm. supér. Sér. 4, 32:1 (1999), 135–150 | MR | Zbl

[11] Bonatti C., Díaz L. J., “On maximal transitive sets of generic diffeomorphisms”, Publ. math. Inst. Hautes Étud. Sci., 96 (2002), 171–197 | DOI | MR | Zbl

[12] Cobham A., “The intrinsic computational difficulty of functions”, Logic, methodology and philosophy of science, Proc. 1964 Int. Congr., North-Holland, Amsterdam, 1965, 24–30 | MR

[13] Díaz L. J., Nogueira A., Pujals E. R., “Heterodimensional tangencies”, Nonlinearity, 19:11 (2006), 2543–2566 | DOI | MR | Zbl

[14] Hénon M., “A two-dimensional mapping with a strange attractor”, Commun. Math. Phys., 50:1 (1976), 69–77 | DOI | MR

[15] Hofbauer F., Keller G., “Quadratic maps without asymptotic measure”, Commun. Math. Phys., 127:2 (1990), 319–337 | DOI | MR | Zbl

[16] Hunt B. R., Kaloshin V. Yu., “Prevalence”, Handbook of dynamical systems, v. 3, Elsevier, Amsterdam, 2010, 43–87 | Zbl

[17] Ilyashenko Yu., Li W., Nonlocal bifurcations, Math. Surv. Monogr., 66, Amer. Math. Soc., Providence, RI, 1999 | MR | Zbl

[18] Kiriki S., Soma T., Takens' last problem and existence of non-trivial wandering domains, E-print, 2015, arXiv: 1503.06258[math.DS] | MR

[19] Lorenz E. N., “Deterministic nonperiodic flow”, J. Atmos. Sci., 20 (1963), 130–141 | 2.0.CO;2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI

[20] Mora L., Viana M., “Abundance of strange attractors”, Acta math., 171:1 (1993), 1–71 | DOI | MR | Zbl

[21] Newhouse S. E., “Diffeomorphisms with infinitely many sinks”, Topology, 13 (1974), 9–18 | DOI | MR | Zbl

[22] Newhouse S. E., “Lectures on dynamical systems”, Dynamical systems, C.I.M.E. Lectures (Bressanone, 1978), Prog. Math., 8, Birkhäuser, Boston, 1980, 1–114 | MR

[23] Pugh C., Shub M., “Ergodic attractors”, Trans. Amer. Math. Soc., 312:1 (1989), 1–54 | DOI | MR | Zbl

[24] Pugh C., Shub M., “Stable ergodicity and partial hyperbolicity”, Int. Conf. on Dynamical Systems, A tribute to Ricardo Mañé (Montevideo, 1995), Pitman Res. Notes Math. Ser., 362, Longman, Harlow, 1996, 182–187 | MR | Zbl

[25] Smale S., “Differentiable dynamical systems”, Bull. Amer. Math. Soc., 73:6 (1967), 747–817 | DOI | MR | Zbl

[26] Takahasi H., “Abundance of non-uniform hyperbolicity in bifurcations of surface endomorphisms”, Tokyo J. Math., 34:1 (2011), 53–113 | DOI | MR | Zbl

[27] Turaev D., “Maps close to identity and universal maps in the Newhouse domain”, Commun. Math. Phys., 335:3 (2015), 1235–1277 | DOI | MR | Zbl

[28] Wang Q., Young L.-S., “Strange attractors with one direction of instability”, Commun. Math. Phys., 218:1 (2001), 1–97 | DOI | MR | Zbl

[29] Yoccoz J.-C., “Introduction to hyperbolic dynamics”, Real and complex dynamical systems, Proc. NATO Adv. Study Inst. (Hillerød, 1993), NATO ASI Ser. C: Math. Phys. Sci., 464, Kluwer, Dordrecht, 1995, 265–291 | MR | Zbl