Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2017_296_a9, author = {I. D. Kan}, title = {A strengthening of a theorem of {Bourgain} and {Kontorovich.} {V}}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {133--139}, publisher = {mathdoc}, volume = {296}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2017_296_a9/} }
I. D. Kan. A strengthening of a theorem of Bourgain and Kontorovich. V. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Analytic and combinatorial number theory, Tome 296 (2017), pp. 133-139. http://geodesic.mathdoc.fr/item/TM_2017_296_a9/
[1] Zaremba S. K., “La méthode des “bons treillis” pour le calcul des intégrales multiples”, Applications of number theory to numerical analysis, Proc. Symp. (Montreal, 1971), Acad. Press, New York, 1972, 39–119 | DOI | MR
[2] Bourgain J., Kontorovich A., “On Zaremba's conjecture”, Ann. Math. Ser. 2, 180:1 (2014), 137–196 | DOI | MR | Zbl
[3] Moshchevitin N., On some open problems in Diophantine approximation, E-print, 2012, arXiv: 1202.4539v4[math.NT]
[4] Frolenkov D. A., Kan I. D., A reinforcement of the Bourgain–Kontorovich's theorem by elementary methods, E-print, 2012, arXiv: 1207.4546[math.NT]
[5] Frolenkov D. A., Kan I. D., A reinforcement of the Bourgain–Kontorovich's theorem, E-print, 2012, arXiv: 1207.5168[math.NT]
[6] Kan I. D., Frolenkov D. A., “Usilenie teoremy Burgeina–Kontorovicha”, Iz. RAN. Ser. mat., 78:2 (2014), 87–144 | DOI | MR | Zbl
[7] Frolenkov D. A., Kan I. D., “A strengthening of a theorem of Bourgain–Kontorovich. II”, Moscow J. Comb. Number Theory, 4:1 (2014), 78–117 | MR | Zbl
[8] Kan I. D., “Usilenie teoremy Burgeina–Kontorovicha. III”, Izv. RAN. Ser. mat., 79:2 (2015), 77–100 | DOI | MR | Zbl
[9] Huang S., “An improvement to Zaremba's conjecture”, Geom. Funct. Anal., 25:3 (2015), 860–914 | DOI | MR | Zbl
[10] Kan I. D., “Usilenie teoremy Burgeina–Kontorovicha. IV”, Izv. RAN. Ser. mat., 80:6 (2016), 103–126 | DOI | MR | Zbl
[11] Magee M., Oh H., Winter D., Uniform congruence counting for Schottky semigroups in $\mathrm {SL}_2(\mathbf Z)$, E-print, 2016, arXiv: 1601.03705v2[math.NT]
[12] Von R., Metod Khardi–Littlvuda, Mir, M., 1985 | MR