A new $k$th derivative estimate for exponential sums via Vinogradov's mean value
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Analytic and combinatorial number theory, Tome 296 (2017), pp. 95-110
Voir la notice de l'article provenant de la source Math-Net.Ru
We give a slight refinement to the process by which estimates for exponential sums are extracted from bounds for Vinogradov's mean value. Coupling this with the recent works of Wooley, and of Bourgain, Demeter and Guth, providing optimal bounds for the Vinogradov mean value, we produce a powerful new $k$th derivative estimate. Roughly speaking, this improves the van der Corput estimate for $k\ge 4$. Various corollaries are given, showing for example that $\zeta (\sigma +it)\ll _{\varepsilon }t^{(1-\sigma )^{3/2}/2+\varepsilon }$ for $t\ge 2$ and $0\le \sigma \le 1$, for any fixed $\varepsilon >0$.
@article{TM_2017_296_a6,
author = {D. R. Heath-Brown},
title = {A new $k$th derivative estimate for exponential sums via {Vinogradov's} mean value},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {95--110},
publisher = {mathdoc},
volume = {296},
year = {2017},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TM_2017_296_a6/}
}
TY - JOUR AU - D. R. Heath-Brown TI - A new $k$th derivative estimate for exponential sums via Vinogradov's mean value JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2017 SP - 95 EP - 110 VL - 296 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2017_296_a6/ LA - ru ID - TM_2017_296_a6 ER -
D. R. Heath-Brown. A new $k$th derivative estimate for exponential sums via Vinogradov's mean value. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Analytic and combinatorial number theory, Tome 296 (2017), pp. 95-110. http://geodesic.mathdoc.fr/item/TM_2017_296_a6/