On the Vinogradov mean value
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Analytic and combinatorial number theory, Tome 296 (2017), pp. 36-46

Voir la notice de l'article provenant de la source Math-Net.Ru

We discuss the recent work of C. Demeter, L. Guth and the author on the proof of the Vinogradov Main Conjecture using the decoupling theory for curves.
@article{TM_2017_296_a2,
     author = {J. Bourgain},
     title = {On the {Vinogradov} mean value},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {36--46},
     publisher = {mathdoc},
     volume = {296},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2017_296_a2/}
}
TY  - JOUR
AU  - J. Bourgain
TI  - On the Vinogradov mean value
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2017
SP  - 36
EP  - 46
VL  - 296
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2017_296_a2/
LA  - ru
ID  - TM_2017_296_a2
ER  - 
%0 Journal Article
%A J. Bourgain
%T On the Vinogradov mean value
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2017
%P 36-46
%V 296
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2017_296_a2/
%G ru
%F TM_2017_296_a2
J. Bourgain. On the Vinogradov mean value. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Analytic and combinatorial number theory, Tome 296 (2017), pp. 36-46. http://geodesic.mathdoc.fr/item/TM_2017_296_a2/