On the Vinogradov mean value
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Analytic and combinatorial number theory, Tome 296 (2017), pp. 36-46.

Voir la notice de l'article provenant de la source Math-Net.Ru

We discuss the recent work of C. Demeter, L. Guth and the author on the proof of the Vinogradov Main Conjecture using the decoupling theory for curves.
@article{TM_2017_296_a2,
     author = {J. Bourgain},
     title = {On the {Vinogradov} mean value},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {36--46},
     publisher = {mathdoc},
     volume = {296},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2017_296_a2/}
}
TY  - JOUR
AU  - J. Bourgain
TI  - On the Vinogradov mean value
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2017
SP  - 36
EP  - 46
VL  - 296
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2017_296_a2/
LA  - ru
ID  - TM_2017_296_a2
ER  - 
%0 Journal Article
%A J. Bourgain
%T On the Vinogradov mean value
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2017
%P 36-46
%V 296
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2017_296_a2/
%G ru
%F TM_2017_296_a2
J. Bourgain. On the Vinogradov mean value. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Analytic and combinatorial number theory, Tome 296 (2017), pp. 36-46. http://geodesic.mathdoc.fr/item/TM_2017_296_a2/

[1] Arkhipov G. I., Chubarikov V. N., Karatsuba A. A., Trigonometric sums in number theory and analysis, W. de Gruyter, Berlin, 2004 | MR | Zbl

[2] Bennett J., Carbery A., Tao T., “On the multilinear restriction and Kakeya conjectures”, Acta math., 196:2 (2006), 261–302 | DOI | MR | Zbl

[3] Bourgain J., “Decoupling inequalities and some mean-value theorems”, J. anal. math. (to appear)

[4] Bourgain J., “Decoupling, exponential sums and the Riemann zeta function”, J. Amer. Math. Soc., 30:1 (2017), 205–224 ; arXiv: 1408.5794[math.NT] | DOI | MR | Zbl

[5] Bourgain J., Demeter C., “The proof of the $l^2$ Decoupling Conjecture”, Ann. Math. Ser. 2, 182:1 (2015), 351–389 | DOI | MR | Zbl

[6] Bourgain J., Demeter C., “Decouplings for curves and hypersurfaces with nonzero Gaussian curvature”, J. anal. math. (to appear)

[7] Bourgain J., Demeter C., Mean value estimates for Weyl sums in two dimensions, E-print, 2015, arXiv: 1509.05388[math.CA]

[8] Bourgain J., Demeter C., Guth L., Proof of the main conjecture in Vinogradov's mean value theorem for degrees higher than three, E-print, 2015, arXiv: 1512.01565[math.NT] | MR

[9] Bourgain J., Guth L., “Bounds on oscillatory integral operators based on multilinear estimates”, Geom. Funct. Anal., 21:6 (2011), 1239–1295 | DOI | MR | Zbl

[10] Ford K., Wooley T. D., “On Vinogradov's mean value theorem: strongly diagonal behaviour via efficient congruencing”, Acta math., 213:2 (2014), 199–236 | DOI | MR | Zbl

[11] Heath-Brown D. R., “Weyl's inequality, Hua's inequality, and Waring's problem”, J. London Math. Soc. Ser. 2, 38:2 (1988), 216–230 | DOI | MR | Zbl

[12] Karatsuba A. A., “Srednee znachenie modulya trigonometricheskoi summy”, Izv. AN SSSR. Ser. mat., 37:6 (1973), 1203–1227 | MR | Zbl

[13] Linnik U. V., “On Weyl's sums”, Mat. sb., 12(54):1 (1943), 28–39 | MR | Zbl

[14] Parsell S. T., Prendiville S. M., Wooley T. D., “Near-optimal mean value estimates for multidimensional Weyl sums”, Geom. Funct. Anal., 23:6 (2013), 1962–2024 | DOI | MR | Zbl

[15] Robert O., Sargos P., “Un théorème de moyenne pour les sommes d'exponentielles. Application à l'inégalité de Weil”, Publ. Inst. Math. Nouv. sér., 67 (2000), 14–30 | MR | Zbl

[16] Stechkin S. B., “O srednikh znacheniyakh modulya trigonometricheskoi summy”, Tr. MIAN, 134, 1975, 283–309 | MR | Zbl

[17] Vaughan R. C., “On Waring's problem for cubes”, J. Reine Angew. Math., 365 (1986), 122–170 | MR | Zbl

[18] Vaughan R. C., The Hardy–Littlewood method, 2nd ed., Cambridge Univ. Press, Cambridge, 1997 | MR | Zbl

[19] Vinogradov I. M., “Novye otsenki summ Veilya”, DAN SSSR, 3:5 (1935), 195–198 | Zbl

[20] Vinogradov I. M., Metod trigonometricheskikh summ v teorii chisel, Tr. MIAN, 23, Izd-vo AN SSSR, M.–L., 1947 | MR | Zbl

[21] Wooley T. D., “On Vinogradov's mean value theorem”, Mathematika, 39:2 (1992), 379–399 | DOI | MR | Zbl

[22] Wooley T. D., “Some remarks on Vinogradov's mean value theorem and Tarry's problem”, Monatsh. Math., 122:3 (1996), 265–273 | DOI | MR | Zbl

[23] Wooley T. D., “The asymptotic formula in Waring's problem”, Int. Math. Res. Not., 2012:7 (2012), 1485–1504 | DOI | MR | Zbl

[24] Wooley T. D., “Vinogradov's mean value theorem via efficient congruencing”, Ann. Math. Ser. 2, 175:3 (2012), 1575–1627 | DOI | MR | Zbl

[25] Wooley T. D., “Vinogradov's mean value theorem via efficient congruencing. II”, Duke Math. J., 162:4 (2013), 673–730 | DOI | MR | Zbl

[26] Wooley T. D., “Multigrade efficient congruencing and Vinogradov's mean value theorem”, Proc. London Math. Soc. Ser. 3, 111:3 (2015), 519–560 ; arXiv: 1310.8447[math.NT] | DOI | MR | Zbl

[27] Wooley T. D., Approximating the main conjecture in Vinogradov's mean value theorem, E-print, 2014, arXiv: 1401.2932[math.NT]

[28] Wooley T. D., “The cubic case of the main conjecture in Vinogradov's mean value theorem”, Adv. Math., 294 (2016), 532–561 ; arXiv: 1401.3150[math.NT] | DOI | MR | Zbl

[29] Wooley T. D., “Translation invariance, exponential sums, and Waring's problem”, Proc. Int. Congr. Math. (Seoul, Korea, 2014), KM Kyung Moon SA, Seoul, 2014, 505–529 ; arXiv: 1404.3508v1[math.NT] | MR