A discrete version of the Mishou theorem. II
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Analytic and combinatorial number theory, Tome 296 (2017), pp. 181-191

Voir la notice de l'article provenant de la source Math-Net.Ru

In 2007, H. Mishou obtained a joint universality theorem for the Riemann zeta-function $\zeta (s)$ and the Hurwitz zeta-function $\zeta (s,\alpha )$ with transcendental parameter $\alpha $. The theorem states that a pair of analytic functions can be simultaneously approximated by the shifts $\zeta (s+i\tau )$ and $\zeta (s+i\tau ,\alpha )$, $\tau \in \mathbb R$. In 2015, E. Buivydas and the author established a version of this theorem in which the approximation is performed by the discrete shifts $\zeta (s+ikh)$ and $\zeta (s+ikh,\alpha )$, $h>0$, $k=0,1,2\dots {}\kern 1pt$. In the present study, we prove joint universality for the functions $\zeta (s)$ and $\zeta (s,\alpha )$ in the sense of approximation of a pair of analytic functions by the shifts $\zeta (s+ik^\beta h)$ and $\zeta (s+ik^\beta h,\alpha )$ with fixed $0\beta 1$.
@article{TM_2017_296_a13,
     author = {A. Laurin\v{c}ikas},
     title = {A discrete version of the {Mishou} theorem. {II}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {181--191},
     publisher = {mathdoc},
     volume = {296},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2017_296_a13/}
}
TY  - JOUR
AU  - A. Laurinčikas
TI  - A discrete version of the Mishou theorem. II
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2017
SP  - 181
EP  - 191
VL  - 296
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2017_296_a13/
LA  - ru
ID  - TM_2017_296_a13
ER  - 
%0 Journal Article
%A A. Laurinčikas
%T A discrete version of the Mishou theorem. II
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2017
%P 181-191
%V 296
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2017_296_a13/
%G ru
%F TM_2017_296_a13
A. Laurinčikas. A discrete version of the Mishou theorem. II. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Analytic and combinatorial number theory, Tome 296 (2017), pp. 181-191. http://geodesic.mathdoc.fr/item/TM_2017_296_a13/