Spectral stability theory of heteroclinic solutions to the Korteweg–de Vries–Burgers equation with an arbitrary potential
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Modern problems of mechanics, Tome 295 (2016), pp. 163-173 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The analysis of stability of heteroclinic solutions to the Korteweg–de Vries–Burgers equation is generalized to the case of an arbitrary potential that gives rise to heteroclinic states. An example of a specific nonconvex potential is given for which there exists a wide set of heteroclinic solutions of different types. Stability of the corresponding solutions in the context of uniqueness of a solution to the problem of decay of an arbitrary discontinuity is discussed.
@article{TM_2016_295_a7,
     author = {A. T. Il'ichev and A. P. Chugainova},
     title = {Spectral stability theory of heteroclinic solutions to the {Korteweg{\textendash}de} {Vries{\textendash}Burgers} equation with an arbitrary potential},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {163--173},
     year = {2016},
     volume = {295},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2016_295_a7/}
}
TY  - JOUR
AU  - A. T. Il'ichev
AU  - A. P. Chugainova
TI  - Spectral stability theory of heteroclinic solutions to the Korteweg–de Vries–Burgers equation with an arbitrary potential
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2016
SP  - 163
EP  - 173
VL  - 295
UR  - http://geodesic.mathdoc.fr/item/TM_2016_295_a7/
LA  - ru
ID  - TM_2016_295_a7
ER  - 
%0 Journal Article
%A A. T. Il'ichev
%A A. P. Chugainova
%T Spectral stability theory of heteroclinic solutions to the Korteweg–de Vries–Burgers equation with an arbitrary potential
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2016
%P 163-173
%V 295
%U http://geodesic.mathdoc.fr/item/TM_2016_295_a7/
%G ru
%F TM_2016_295_a7
A. T. Il'ichev; A. P. Chugainova. Spectral stability theory of heteroclinic solutions to the Korteweg–de Vries–Burgers equation with an arbitrary potential. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Modern problems of mechanics, Tome 295 (2016), pp. 163-173. http://geodesic.mathdoc.fr/item/TM_2016_295_a7/

[1] Alexander J. C., Sachs R., “Linear instability of solitary waves of a Boussinesq type equation: A computer assisted computation”, Nonlinear World, 2:4 (1995), 471–507 | MR | Zbl

[2] Chugainova A. P., “Nestatsionarnye resheniya obobschennogo uravneniya Kortevega–de Friza–Byurgersa”, Tr. MIAN, 281, 2013, 215–223 | MR | Zbl

[3] Chugainova A. P., Il'ichev A. T., Kulikovskii A. G., Shargatov V. A., “Problem of an arbitrary discontinuity disintegration for the generalized Hopf equation: Selection conditions for the unique solution”, IMA J. Appl. Math. (to appear)

[4] Chugainova A. P., Shargatov V. A., “Ustoichivost nestatsionarnykh reshenii obobschennogo uravneniya Kortevega–de Briza–Byurgersa”, ZhVMiMF, 55:2 (2015), 253–266 | MR | Zbl

[5] Chugainova A. P., Shargatov V. A., “Ustoichivost struktury razryvov, opisyvaemykh obobschennym uravneniem Kortevega–de Vriza–Byurgersa”, ZhVMiMF, 56:2 (2016), 259–274 | MR | Zbl

[6] Gelfand I. M., “Nekotorye zadachi teorii kvazilineinykh uravnenii”, UMN, 14:2 (1959), 87–158 | MR | Zbl

[7] Godunov S. K., “O needinstvennosti “razmazyvaniya” razryvov v resheniyakh kvazilineinykh sistem”, DAN SSSR, 136:2 (1961), 272–273 | MR | Zbl

[8] Godunov S. K., Romenskii E. I., Elementy mekhaniki sploshnykh sred i zakony sokhraneniya, Nauch. kn., Novosibirsk, 1998

[9] Ilichev A. T., “Uedinennye volnovye pakety i temnye solitony na poverkhnosti razdela voda–led”, Tr. MIAN, 289, 2015, 163–177 | MR | Zbl

[10] Ilichev A. T., “Solitonopodobnye struktury na poverkhnosti razdela voda–led”, UMN, 70:6 (2015), 85–138 | DOI | MR | Zbl

[11] Ilichev A. T., “Uedinennye volnovye pakety pod szhatym ledovym pokrovom”, Izv. RAN. Mekhanika zhidkosti i gaza, 2016, no. 3, 32–42 | Zbl

[12] Ilichev A. T., Chugainova A. P., Shargatov V. A., “Spektralnaya ustoichivost osobykh razryvov”, DAN, 462:5 (2015), 512–516 | MR | Zbl

[13] Il'ichev A. T., Fu Y. B., “Stability of an inflated hyperelastic membrane tube with localized wall thinning”, Int. J. Eng. Sci., 80 (2014), 53–61 | DOI | MR

[14] Kulikovskii A. G., “O vozmozhnom vliyanii kolebanii v strukture razryva na mnozhestvo dopustimykh razryvov”, DAN SSSR, 275:6 (1984), 1349–1352 | MR

[15] Kulikovskii A. G., Chugainova A. P., “Modelirovanie vliyaniya melkomasshtabnykh dispersionnykh protsessov v sploshnoi srede na formirovanie krupnomasshtabnykh yavlenii”, ZhVMiMF, 44:6 (2004), 1119–1126 | MR | Zbl

[16] Kulikovskii A. G., Chugainova A. P., “Klassicheskie i neklassicheskie razryvy v resheniyakh uravnenii nelineinoi teorii uprugosti”, UMN, 63:2 (2008), 85–152 | DOI | MR | Zbl

[17] Kulikovskii A. G., Pogorelov N. V., Semenov A. Yu., Matematicheskie voprosy chislennogo resheniya giperbolicheskikh sistem uravnenii, Fizmatlit, M., 2012

[18] Pego R. L., Smereka P., Weinstein M. I., “Oscillatory instability of traveling waves for a KdV–Burgers equation”, Physica D, 67:1–3 (1993), 45–65 | DOI | MR | Zbl

[19] Pego R. L., Weinstein M. I., “Eigenvalues, and instabilities of solitary waves”, Philos. Trans. R. Soc. London A, 340:1656 (1992), 47–94 | DOI | MR | Zbl