Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2016_295_a7, author = {A. T. Il'ichev and A. P. Chugainova}, title = {Spectral stability theory of heteroclinic solutions to the {Korteweg--de} {Vries--Burgers} equation with an arbitrary potential}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {163--173}, publisher = {mathdoc}, volume = {295}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2016_295_a7/} }
TY - JOUR AU - A. T. Il'ichev AU - A. P. Chugainova TI - Spectral stability theory of heteroclinic solutions to the Korteweg--de Vries--Burgers equation with an arbitrary potential JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2016 SP - 163 EP - 173 VL - 295 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2016_295_a7/ LA - ru ID - TM_2016_295_a7 ER -
%0 Journal Article %A A. T. Il'ichev %A A. P. Chugainova %T Spectral stability theory of heteroclinic solutions to the Korteweg--de Vries--Burgers equation with an arbitrary potential %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2016 %P 163-173 %V 295 %I mathdoc %U http://geodesic.mathdoc.fr/item/TM_2016_295_a7/ %G ru %F TM_2016_295_a7
A. T. Il'ichev; A. P. Chugainova. Spectral stability theory of heteroclinic solutions to the Korteweg--de Vries--Burgers equation with an arbitrary potential. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Modern problems of mechanics, Tome 295 (2016), pp. 163-173. http://geodesic.mathdoc.fr/item/TM_2016_295_a7/
[1] Alexander J. C., Sachs R., “Linear instability of solitary waves of a Boussinesq type equation: A computer assisted computation”, Nonlinear World, 2:4 (1995), 471–507 | MR | Zbl
[2] Chugainova A. P., “Nestatsionarnye resheniya obobschennogo uravneniya Kortevega–de Friza–Byurgersa”, Tr. MIAN, 281, 2013, 215–223 | MR | Zbl
[3] Chugainova A. P., Il'ichev A. T., Kulikovskii A. G., Shargatov V. A., “Problem of an arbitrary discontinuity disintegration for the generalized Hopf equation: Selection conditions for the unique solution”, IMA J. Appl. Math. (to appear)
[4] Chugainova A. P., Shargatov V. A., “Ustoichivost nestatsionarnykh reshenii obobschennogo uravneniya Kortevega–de Briza–Byurgersa”, ZhVMiMF, 55:2 (2015), 253–266 | MR | Zbl
[5] Chugainova A. P., Shargatov V. A., “Ustoichivost struktury razryvov, opisyvaemykh obobschennym uravneniem Kortevega–de Vriza–Byurgersa”, ZhVMiMF, 56:2 (2016), 259–274 | MR | Zbl
[6] Gelfand I. M., “Nekotorye zadachi teorii kvazilineinykh uravnenii”, UMN, 14:2 (1959), 87–158 | MR | Zbl
[7] Godunov S. K., “O needinstvennosti “razmazyvaniya” razryvov v resheniyakh kvazilineinykh sistem”, DAN SSSR, 136:2 (1961), 272–273 | MR | Zbl
[8] Godunov S. K., Romenskii E. I., Elementy mekhaniki sploshnykh sred i zakony sokhraneniya, Nauch. kn., Novosibirsk, 1998
[9] Ilichev A. T., “Uedinennye volnovye pakety i temnye solitony na poverkhnosti razdela voda–led”, Tr. MIAN, 289, 2015, 163–177 | MR | Zbl
[10] Ilichev A. T., “Solitonopodobnye struktury na poverkhnosti razdela voda–led”, UMN, 70:6 (2015), 85–138 | DOI | MR | Zbl
[11] Ilichev A. T., “Uedinennye volnovye pakety pod szhatym ledovym pokrovom”, Izv. RAN. Mekhanika zhidkosti i gaza, 2016, no. 3, 32–42 | Zbl
[12] Ilichev A. T., Chugainova A. P., Shargatov V. A., “Spektralnaya ustoichivost osobykh razryvov”, DAN, 462:5 (2015), 512–516 | MR | Zbl
[13] Il'ichev A. T., Fu Y. B., “Stability of an inflated hyperelastic membrane tube with localized wall thinning”, Int. J. Eng. Sci., 80 (2014), 53–61 | DOI | MR
[14] Kulikovskii A. G., “O vozmozhnom vliyanii kolebanii v strukture razryva na mnozhestvo dopustimykh razryvov”, DAN SSSR, 275:6 (1984), 1349–1352 | MR
[15] Kulikovskii A. G., Chugainova A. P., “Modelirovanie vliyaniya melkomasshtabnykh dispersionnykh protsessov v sploshnoi srede na formirovanie krupnomasshtabnykh yavlenii”, ZhVMiMF, 44:6 (2004), 1119–1126 | MR | Zbl
[16] Kulikovskii A. G., Chugainova A. P., “Klassicheskie i neklassicheskie razryvy v resheniyakh uravnenii nelineinoi teorii uprugosti”, UMN, 63:2 (2008), 85–152 | DOI | MR | Zbl
[17] Kulikovskii A. G., Pogorelov N. V., Semenov A. Yu., Matematicheskie voprosy chislennogo resheniya giperbolicheskikh sistem uravnenii, Fizmatlit, M., 2012
[18] Pego R. L., Smereka P., Weinstein M. I., “Oscillatory instability of traveling waves for a KdV–Burgers equation”, Physica D, 67:1–3 (1993), 45–65 | DOI | MR | Zbl
[19] Pego R. L., Weinstein M. I., “Eigenvalues, and instabilities of solitary waves”, Philos. Trans. R. Soc. London A, 340:1656 (1992), 47–94 | DOI | MR | Zbl