Spectral stability theory of heteroclinic solutions to the Korteweg--de Vries--Burgers equation with an arbitrary potential
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Modern problems of mechanics, Tome 295 (2016), pp. 163-173.

Voir la notice de l'article provenant de la source Math-Net.Ru

The analysis of stability of heteroclinic solutions to the Korteweg–de Vries–Burgers equation is generalized to the case of an arbitrary potential that gives rise to heteroclinic states. An example of a specific nonconvex potential is given for which there exists a wide set of heteroclinic solutions of different types. Stability of the corresponding solutions in the context of uniqueness of a solution to the problem of decay of an arbitrary discontinuity is discussed.
@article{TM_2016_295_a7,
     author = {A. T. Il'ichev and A. P. Chugainova},
     title = {Spectral stability theory of heteroclinic solutions to the {Korteweg--de} {Vries--Burgers} equation with an arbitrary potential},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {163--173},
     publisher = {mathdoc},
     volume = {295},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2016_295_a7/}
}
TY  - JOUR
AU  - A. T. Il'ichev
AU  - A. P. Chugainova
TI  - Spectral stability theory of heteroclinic solutions to the Korteweg--de Vries--Burgers equation with an arbitrary potential
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2016
SP  - 163
EP  - 173
VL  - 295
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2016_295_a7/
LA  - ru
ID  - TM_2016_295_a7
ER  - 
%0 Journal Article
%A A. T. Il'ichev
%A A. P. Chugainova
%T Spectral stability theory of heteroclinic solutions to the Korteweg--de Vries--Burgers equation with an arbitrary potential
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2016
%P 163-173
%V 295
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2016_295_a7/
%G ru
%F TM_2016_295_a7
A. T. Il'ichev; A. P. Chugainova. Spectral stability theory of heteroclinic solutions to the Korteweg--de Vries--Burgers equation with an arbitrary potential. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Modern problems of mechanics, Tome 295 (2016), pp. 163-173. http://geodesic.mathdoc.fr/item/TM_2016_295_a7/

[1] Alexander J. C., Sachs R., “Linear instability of solitary waves of a Boussinesq type equation: A computer assisted computation”, Nonlinear World, 2:4 (1995), 471–507 | MR | Zbl

[2] Chugainova A. P., “Nestatsionarnye resheniya obobschennogo uravneniya Kortevega–de Friza–Byurgersa”, Tr. MIAN, 281, 2013, 215–223 | MR | Zbl

[3] Chugainova A. P., Il'ichev A. T., Kulikovskii A. G., Shargatov V. A., “Problem of an arbitrary discontinuity disintegration for the generalized Hopf equation: Selection conditions for the unique solution”, IMA J. Appl. Math. (to appear)

[4] Chugainova A. P., Shargatov V. A., “Ustoichivost nestatsionarnykh reshenii obobschennogo uravneniya Kortevega–de Briza–Byurgersa”, ZhVMiMF, 55:2 (2015), 253–266 | MR | Zbl

[5] Chugainova A. P., Shargatov V. A., “Ustoichivost struktury razryvov, opisyvaemykh obobschennym uravneniem Kortevega–de Vriza–Byurgersa”, ZhVMiMF, 56:2 (2016), 259–274 | MR | Zbl

[6] Gelfand I. M., “Nekotorye zadachi teorii kvazilineinykh uravnenii”, UMN, 14:2 (1959), 87–158 | MR | Zbl

[7] Godunov S. K., “O needinstvennosti “razmazyvaniya” razryvov v resheniyakh kvazilineinykh sistem”, DAN SSSR, 136:2 (1961), 272–273 | MR | Zbl

[8] Godunov S. K., Romenskii E. I., Elementy mekhaniki sploshnykh sred i zakony sokhraneniya, Nauch. kn., Novosibirsk, 1998

[9] Ilichev A. T., “Uedinennye volnovye pakety i temnye solitony na poverkhnosti razdela voda–led”, Tr. MIAN, 289, 2015, 163–177 | MR | Zbl

[10] Ilichev A. T., “Solitonopodobnye struktury na poverkhnosti razdela voda–led”, UMN, 70:6 (2015), 85–138 | DOI | MR | Zbl

[11] Ilichev A. T., “Uedinennye volnovye pakety pod szhatym ledovym pokrovom”, Izv. RAN. Mekhanika zhidkosti i gaza, 2016, no. 3, 32–42 | Zbl

[12] Ilichev A. T., Chugainova A. P., Shargatov V. A., “Spektralnaya ustoichivost osobykh razryvov”, DAN, 462:5 (2015), 512–516 | MR | Zbl

[13] Il'ichev A. T., Fu Y. B., “Stability of an inflated hyperelastic membrane tube with localized wall thinning”, Int. J. Eng. Sci., 80 (2014), 53–61 | DOI | MR

[14] Kulikovskii A. G., “O vozmozhnom vliyanii kolebanii v strukture razryva na mnozhestvo dopustimykh razryvov”, DAN SSSR, 275:6 (1984), 1349–1352 | MR

[15] Kulikovskii A. G., Chugainova A. P., “Modelirovanie vliyaniya melkomasshtabnykh dispersionnykh protsessov v sploshnoi srede na formirovanie krupnomasshtabnykh yavlenii”, ZhVMiMF, 44:6 (2004), 1119–1126 | MR | Zbl

[16] Kulikovskii A. G., Chugainova A. P., “Klassicheskie i neklassicheskie razryvy v resheniyakh uravnenii nelineinoi teorii uprugosti”, UMN, 63:2 (2008), 85–152 | DOI | MR | Zbl

[17] Kulikovskii A. G., Pogorelov N. V., Semenov A. Yu., Matematicheskie voprosy chislennogo resheniya giperbolicheskikh sistem uravnenii, Fizmatlit, M., 2012

[18] Pego R. L., Smereka P., Weinstein M. I., “Oscillatory instability of traveling waves for a KdV–Burgers equation”, Physica D, 67:1–3 (1993), 45–65 | DOI | MR | Zbl

[19] Pego R. L., Weinstein M. I., “Eigenvalues, and instabilities of solitary waves”, Philos. Trans. R. Soc. London A, 340:1656 (1992), 47–94 | DOI | MR | Zbl