Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2016_295_a6, author = {L. H. Eliasson and B. Gr\'ebert and S. B. Kuksin}, title = {A {KAM} theorem for space-multidimensional {Hamiltonian} {PDEs}}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {142--162}, publisher = {mathdoc}, volume = {295}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2016_295_a6/} }
TY - JOUR AU - L. H. Eliasson AU - B. Grébert AU - S. B. Kuksin TI - A KAM theorem for space-multidimensional Hamiltonian PDEs JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2016 SP - 142 EP - 162 VL - 295 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2016_295_a6/ LA - ru ID - TM_2016_295_a6 ER -
L. H. Eliasson; B. Grébert; S. B. Kuksin. A KAM theorem for space-multidimensional Hamiltonian PDEs. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Modern problems of mechanics, Tome 295 (2016), pp. 142-162. http://geodesic.mathdoc.fr/item/TM_2016_295_a6/
[1] Berti M., Bolle P., “Sobolev quasi periodic solutions of multidimensional wave equations with a multiplicative potential”, Nonlinearity, 25:9 (2012), 2579–2613 | DOI | MR | Zbl
[2] Berti M., Bolle P., “Quasi-periodic solutions with Sobolev regularity of NLS on $\mathbb T^d$ with a multiplicative potential”, J. Eur. Math. Soc., 15:1 (2013), 229–286 | DOI | MR | Zbl
[3] Berti M., Corsi L., Procesi M., “An abstract Nash–Moser theorem and quasi-periodic solutions for NLW and NLS on compact Lie groups and homogeneous manifolds”, Commun. Math. Phys., 334:3 (2015), 1413–1454 | DOI | MR | Zbl
[4] Bourgain J., “Quasi-periodic solutions of Hamiltonian perturbations of 2D linear Schrödinger equations”, Ann. Math. Ser. 2, 148:2 (1998), 363–439 | DOI | MR | Zbl
[5] Bourgain J., Green's function estimates for lattice Schrödinger operators and applications, Ann. Math. Stud., 158, Princeton Univ. Press, Princeton, NJ, 2005 | MR | Zbl
[6] Eliasson L. H., “Perturbations of stable invariant tori for Hamiltonian systems”, Ann. Sc. Norm. Super. Pisa. Cl. Sci. Ser. 4, 15:1 (1988), 115–147 | MR | Zbl
[7] Eliasson L. H., Grébert B., Kuksin S. B., KAM for the non-linear beam equation 2: A normal form theorem, E-print, 2015, arXiv: 1502.02262[math.AP]
[8] Eliasson L. H., Grébert B., Kuksin S. B., KAM for the nonlinear beam equation, E-print, 2016, arXiv: 1604.01657[math.AP] | MR
[9] Eliasson L. H., Kuksin S. B., “On reducibility of Schrödinger equations with quasiperiodic in time potentials”, Commun. Math. Phys., 286:1 (2009), 125–135 | DOI | MR | Zbl
[10] Eliasson L. H., Kuksin S. B., “KAM for the nonlinear Schrödinger equation”, Ann. Math. Ser. 2, 172:1 (2010), 371–435 | DOI | MR | Zbl
[11] Geng J., You J., “A KAM theorem for Hamiltonian partial differential equations in higher dimensional spaces”, Commun. Math. Phys., 262:2 (2006), 343–372 | DOI | MR | Zbl
[12] Geng J., You J., “KAM tori for higher dimensional beam equations with constant potentials”, Nonlinearity, 19:10 (2006), 2405–2423 | DOI | MR | Zbl
[13] Grébert B., Paturel E., “KAM for the Klein–Gordon equation on $\mathbb S^d$”, Boll. Unione Mat. Ital. Ser. 9, 9:2 (2016), 237–288 | DOI | MR | Zbl
[14] Grébert B., Paturel E., On reducibility of quantum harmonic oscillator on $\mathbb R^d$ with quasiperiodic in time potential, E-print, 2016, arXiv: 1603.07455[math.AP]
[15] Grébert B., Thomann L., “KAM for the quantum harmonic oscillator”, Commun. Math. Phys., 307:2 (2011), 383–427 | DOI | MR | Zbl
[16] Kuksin S. B., “Gamiltonovy vozmuscheniya beskonechnomernykh lineinykh sistem s mnimym spektrom”, Funkts. analiz i ego pril., 21:3 (1987), 22–37 | MR | Zbl
[17] Kuksin S. B., Nearly integrable infinite-dimensional Hamiltonian systems, Lect. Notes Math., 1556, Springer, Berlin, 1993 | DOI | MR | Zbl
[18] Kuksin S. B., Analysis of Hamiltonian PDEs, Oxford Lect. Ser. Math. Appl., 19, Oxford Univ. Press, Oxford, 2000 | MR | Zbl
[19] Kuksin S., Pöschel J., “Invariant Cantor manifolds of quasi-periodic oscillations for a nonlinear Schrödinger equation”, Ann. Math. Ser. 2, 143:1 (1996), 149–179 | DOI | MR | Zbl
[20] Pöschel J., “A KAM-theorem for some nonlinear partial differential equations”, Ann. Sc. Norm. Super. Pisa. Cl. Sci. Ser. 4, 23:1 (1996), 119–148 | MR | Zbl
[21] Procesi C., Procesi M., “A KAM algorithm for the resonant non-linear Schrödinger equation”, Adv. Math., 272 (2015), 399–470 | DOI | MR | Zbl
[22] Procesi M., Procesi C., “A normal form for the Schrödinger equation with analytic non-linearities”, Commun. Math. Phys., 312:2 (2012), 501–557 | DOI | MR | Zbl
[23] Wang W.-M., “Energy supercritical nonlinear Schrödinger equations: Quasiperiodic solutions”, Duke Math J., 165:6 (2016), 1129–1192 | MR | Zbl
[24] You J., “Perturbations of lower dimensional tori for Hamiltonian systems”, J. Diff. Eqns., 152:1 (1999), 1–29 | DOI | MR | Zbl