Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2016_295_a5, author = {A. V. Dymov}, title = {Nonequilibrium statistical mechanics of a~solid immersed in a~continuum}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {107--141}, publisher = {mathdoc}, volume = {295}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2016_295_a5/} }
A. V. Dymov. Nonequilibrium statistical mechanics of a~solid immersed in a~continuum. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Modern problems of mechanics, Tome 295 (2016), pp. 107-141. http://geodesic.mathdoc.fr/item/TM_2016_295_a5/
[1] Arnold V. I., Kozlov V. V., Neishtadt A. I., Matematicheskie aspekty klassicheskoi i nebesnoi mekhaniki, URSS, M., 2002
[2] Basile G., Bernardin C., Olla S., “Thermal conductivity for a momentum conservative model”, Commun. Math. Phys., 287:1 (2009), 67–98 | DOI | MR | Zbl
[3] Basile G., Olla S., Spohn H., “Energy transport in stochastically perturbed lattice dynamics”, Arch. Ration. Mech. Anal., 195:1 (2010), 171–203 | DOI | MR | Zbl
[4] Bernardin C., Huveneers F., “Small perturbation of a disordered harmonic chain by a noise and an anharmonic potential”, Probab. Theory Relat. Fields, 157:1–2 (2013), 301–331 | DOI | MR | Zbl
[5] Bernardin C., Huveneers F., Lebowitz J. L., Liverani C., Olla S., “Green–Kubo formula for weakly coupled systems with noise”, Commun. Math. Phys., 334:3 (2015), 1377–1412 | DOI | MR | Zbl
[6] Bernardin C., Kannan V., Lebowitz J. L., Lukkarinen J., “Harmonic systems with bulk noises”, J. Stat. Phys., 146:4 (2012), 800–831 | DOI | MR | Zbl
[7] Bernardin C., Olla S., “Fourier's law for a microscopic model of heat conduction”, J. Stat. Phys., 121:3–4 (2005), 271–289 | DOI | MR | Zbl
[8] Bernardin C., Olla S., “Transport properties of a chain of anharmonic oscillators with random flip of velocities”, J. Stat. Phys., 145:5 (2011), 1224–1255 | DOI | MR | Zbl
[9] Bogachev V. I., Krylov N. V., Röckner M., “On regularity of transition probabilities and invariant measures of singular diffusions under minimal conditions”, Commun. Partial Diff. Eqns., 26 (2001), 2037–2080 | DOI | MR | Zbl
[10] Bonetto F., Lebowitz J. L., Lukkarinen J., “Fourier's law for a harmonic crystal with self-consistent stochastic reservoirs”, J. Stat. Phys., 116:1–4 (2004), 783–813 | DOI | MR | Zbl
[11] Bonetto F., Lebowitz J. L., Lukkarinen J., Olla S., “Heat conduction and entropy production in anharmonic crystals with self-consistent stochastic reservoirs”, J. Stat. Phys., 134:5–6 (2009), 1097–1119 | DOI | MR | Zbl
[12] Bonetto F., Lebowitz J. L., Rey-Bellet L., “Fourier's law: A challenge to theorists”, Mathematical physics 2000, Proc. Int. Congr. (London, 2000), Imperial College Press, London, 2000, 128–150 | DOI | MR | Zbl
[13] Carmona P., “Existence and uniqueness of an invariant measure for a chain of oscillators in contact with two heat baths”, Stochastic Processes Appl., 117:8 (2007), 1076–1092 | DOI | MR | Zbl
[14] Cuneo N., Eckmann J.-P., “Non-equilibrium steady states for chains of four rotors”, Commun. Math. Phys., 345:1 (2016), 185–221 | DOI | MR | Zbl
[15] Cuneo N., Eckmann J.-P., Poquet C., “Non-equilibrium steady state and subgeometric ergodicity for a chain of three coupled rotors”, Nonlinearity, 28:7 (2015), 2397–2421 | DOI | MR | Zbl
[16] Dolgopyat D., Liverani C., “Energy transfer in a fast–slow Hamiltonian system”, Commun. Math. Phys., 308:1 (2011), 201–225 | DOI | MR | Zbl
[17] Dymov A. V., “Dissipativnye effekty v odnoi lineinoi lagranzhevoi sisteme s beskonechnym chislom stepenei svobody”, Izv. RAN. Ser. mat., 76:6 (2012), 45–80 | DOI | MR | Zbl
[18] Dymov A., Statistical mechanics of nonequilibrium systems of rotators with alternated spins, E-print, 2014, arXiv: 1403.1219[math-ph]
[19] Dymov A., “Nonequilibrium statistical mechanics of Hamiltonian rotators with alternated spins”, J. Stat. Phys., 158:4 (2015), 968–1006 | DOI | MR | Zbl
[20] Dymov A., “Nonequilibrium statistical mechanics of weakly stochastically perturbed system of oscillators”, Ann. Henri Poincaré, 17:7 (2016), 1825–1882 | DOI | MR | Zbl
[21] Eckmann J.-P., Hairer M., “Non-equilibrium statistical mechanics of strongly anharmonic chains of oscillators”, Commun. Math. Phys., 212:1 (2000), 105–164 | DOI | MR | Zbl
[22] Eckmann J.-P., Pillet C.-A., Rey-Bellet L., “Non-equilibrium statistical mechanics of anharmonic chains coupled to two heat baths at different temperatures”, Commun. Math. Phys., 201:3 (1999), 657–697 | DOI | MR | Zbl
[23] Freidlin M. I., Wentzell A. D., “Averaging principle for stochastic perturbations of multifrequency systems”, Stoch. Dyn., 3:3 (2003), 393–408 | DOI | MR | Zbl
[24] Freidlin M. I., Wentzell A. D., “Long-time behavior of weakly coupled oscillators”, J. Stat. Phys., 123:6 (2006), 1311–1337 | DOI | MR | Zbl
[25] Freidlin M. I., Wentzell A. D., Random perturbations of dynamical systems, 3rd ed., Springer, Berlin, 2012 | MR | Zbl
[26] Hairer M., Mattingly J. C., “Slow energy dissipation in anharmonic oscillator chains”, Commun. Pure Appl. Math., 62:8 (2009), 999–1032 | DOI | MR | Zbl
[27] Karatzas I., Shreve S., Brownian motion and stochastic calculus, 2nd ed., Springer, New York, 1991 | MR | Zbl
[28] Khasminskii R. Z., “O printsipe usredneniya dlya stokhasticheskikh differentsialnykh uravnenii Ito”, Kibernetika, 4 (1968), 260–279
[29] Khasminskii R., Stochastic stability of differential equations, 2nd ed., Springer, Berlin, 2012 | MR | Zbl
[30] Krylov N. V., Upravlyaemye protsessy diffuzionnogo tipa, Nauka, M., 1977 | MR
[31] Kuksin S. B., “Damped-driven KdV and effective equations for long-time behaviour of its solutions”, Geom. Funct. Anal., 20:6 (2010), 1431–1463 | DOI | MR | Zbl
[32] Kuksin S. B., “Weakly nonlinear stochastic CGL equations”, Ann. Inst. Henri Poincaré. Probab. Stat., 49:4 (2013), 1033–1056 | DOI | MR | Zbl
[33] Kuksin S., Maiocchi A., Resonant averaging for weakly nonlinear stochastic Schrodinger equations, E-print, 2013, arXiv: 1309.5022[math-ph]
[34] Kuksin S. B., Piatnitski A. L., “Khasminskii–Whitham averaging for randomly perturbed KdV equation”, J. Math. Pures Appl., 89:4 (2008), 400–428 | DOI | MR | Zbl
[35] Kuksin S., Shirikyan A., Mathematics of two-dimensional turbulence, Cambridge Univ. Press, Cambridge, 2012 | MR | Zbl
[36] Lepri S., Livi R., Politi A., “Thermal conduction in classical low-dimensional lattices”, Phys. Rep., 377:1 (2003), 1–80 | DOI | MR
[37] Liverani C., Olla S., “Toward the Fourier law for a weakly interacting anharmonic crystal”, J. Amer. Math. Soc., 25:2 (2012), 555–583 | DOI | MR | Zbl
[38] Mattingly J. C., Stuart A. M., Higham D. J., “Ergodicity for SDEs and approximations: Locally Lipschitz vector fields and degenerate noise”, Stochastic Processes Appl., 101:2 (2002), 185–232 | DOI | MR | Zbl
[39] Øksendal B., Stochastic differential equations: An introduction with applications, Springer, Berlin, 2003 | MR
[40] Pardoux E., Veretennikov A. Yu., “On the Poisson equation and diffusion approximation. I”, Ann. Probab., 29:3 (2001), 1061–1085 | DOI | MR | Zbl
[41] Peierls R., “On the kinetic theory of thermal conduction in crystals”, Selected Scientific Papers of Sir Rudolf Peierls, With commentary, World Scientific, Singapore, 1997, 15–48 | DOI
[42] Rey-Bellet L., Thomas L. E., “Exponential convergence to non-equilibrium stationary states in classical statistical mechanics”, Commun. Math. Phys., 225:2 (2002), 305–329 | DOI | MR | Zbl
[43] Rieder Z., Lebowitz J. L., Lieb E., “Properties of a harmonic crystal in a stationary nonequilibrium state”, J. Math. Phys., 8 (1967), 1073–1078 | DOI
[44] Ruelle D., “A mechanical model for Fourier's law of heat conduction”, Commun. Math. Phys., 311:3 (2012), 755–768 | DOI | MR | Zbl
[45] Saulin S. M., “O dissipativnykh effektakh v beskonechnomernykh gamiltonovykh sistemakh”, TMF, 191 (2017) (to appear)
[46] Shirikyan A., “Local times for solutions of the complex Ginzburg–Landau equation and the inviscid limit”, J. Math. Anal. Appl., 384:1 (2011), 130–137 | DOI | MR | Zbl
[47] Spohn H., Large scale dynamics of interacting particles, Springer, Berlin, 1991 | Zbl
[48] Treschev D., “Oscillator and thermostat”, Discrete Contin. Dyn. Syst., 28:4 (2010), 1693–1712 | DOI | MR | Zbl
[49] Veretennikov A. Yu., “Ob otsenkakh skorosti peremeshivaniya dlya stokhasticheskikh uravnenii”, Teoriya veroyatn. i ee primen., 32:2 (1987), 299–308 | MR | Zbl
[50] Veretennikov A. Yu., “On polynomial mixing bounds for stochastic differential equations”, Stochastic Processes Appl., 70:1 (1997), 115–127 | DOI | MR | Zbl
[51] Yamada T., Watanabe S., “On the uniqueness of solutions of stochastic differential equations”, J. Math. Kyoto Univ., 11 (1971), 155–167 | MR | Zbl