Nonequilibrium statistical mechanics of a~solid immersed in a~continuum
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Modern problems of mechanics, Tome 295 (2016), pp. 107-141.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the introductory part of this survey, we briefly discuss the problems of nonequilibrium statistical physics that arise in the study of energy transport in solids as well as the results available at the moment. In the main part of the survey, we explain, compare, and generalize results obtained in our previous works. We study the dynamics and energy transport in Hamiltonian systems of particles where each particle is weakly perturbed by the interaction with its own stochastic Langevin thermostat. Such systems can be regarded as models of solids that interact weakly with a continuum.
@article{TM_2016_295_a5,
     author = {A. V. Dymov},
     title = {Nonequilibrium statistical mechanics of a~solid immersed in a~continuum},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {107--141},
     publisher = {mathdoc},
     volume = {295},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2016_295_a5/}
}
TY  - JOUR
AU  - A. V. Dymov
TI  - Nonequilibrium statistical mechanics of a~solid immersed in a~continuum
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2016
SP  - 107
EP  - 141
VL  - 295
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2016_295_a5/
LA  - ru
ID  - TM_2016_295_a5
ER  - 
%0 Journal Article
%A A. V. Dymov
%T Nonequilibrium statistical mechanics of a~solid immersed in a~continuum
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2016
%P 107-141
%V 295
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2016_295_a5/
%G ru
%F TM_2016_295_a5
A. V. Dymov. Nonequilibrium statistical mechanics of a~solid immersed in a~continuum. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Modern problems of mechanics, Tome 295 (2016), pp. 107-141. http://geodesic.mathdoc.fr/item/TM_2016_295_a5/

[1] Arnold V. I., Kozlov V. V., Neishtadt A. I., Matematicheskie aspekty klassicheskoi i nebesnoi mekhaniki, URSS, M., 2002

[2] Basile G., Bernardin C., Olla S., “Thermal conductivity for a momentum conservative model”, Commun. Math. Phys., 287:1 (2009), 67–98 | DOI | MR | Zbl

[3] Basile G., Olla S., Spohn H., “Energy transport in stochastically perturbed lattice dynamics”, Arch. Ration. Mech. Anal., 195:1 (2010), 171–203 | DOI | MR | Zbl

[4] Bernardin C., Huveneers F., “Small perturbation of a disordered harmonic chain by a noise and an anharmonic potential”, Probab. Theory Relat. Fields, 157:1–2 (2013), 301–331 | DOI | MR | Zbl

[5] Bernardin C., Huveneers F., Lebowitz J. L., Liverani C., Olla S., “Green–Kubo formula for weakly coupled systems with noise”, Commun. Math. Phys., 334:3 (2015), 1377–1412 | DOI | MR | Zbl

[6] Bernardin C., Kannan V., Lebowitz J. L., Lukkarinen J., “Harmonic systems with bulk noises”, J. Stat. Phys., 146:4 (2012), 800–831 | DOI | MR | Zbl

[7] Bernardin C., Olla S., “Fourier's law for a microscopic model of heat conduction”, J. Stat. Phys., 121:3–4 (2005), 271–289 | DOI | MR | Zbl

[8] Bernardin C., Olla S., “Transport properties of a chain of anharmonic oscillators with random flip of velocities”, J. Stat. Phys., 145:5 (2011), 1224–1255 | DOI | MR | Zbl

[9] Bogachev V. I., Krylov N. V., Röckner M., “On regularity of transition probabilities and invariant measures of singular diffusions under minimal conditions”, Commun. Partial Diff. Eqns., 26 (2001), 2037–2080 | DOI | MR | Zbl

[10] Bonetto F., Lebowitz J. L., Lukkarinen J., “Fourier's law for a harmonic crystal with self-consistent stochastic reservoirs”, J. Stat. Phys., 116:1–4 (2004), 783–813 | DOI | MR | Zbl

[11] Bonetto F., Lebowitz J. L., Lukkarinen J., Olla S., “Heat conduction and entropy production in anharmonic crystals with self-consistent stochastic reservoirs”, J. Stat. Phys., 134:5–6 (2009), 1097–1119 | DOI | MR | Zbl

[12] Bonetto F., Lebowitz J. L., Rey-Bellet L., “Fourier's law: A challenge to theorists”, Mathematical physics 2000, Proc. Int. Congr. (London, 2000), Imperial College Press, London, 2000, 128–150 | DOI | MR | Zbl

[13] Carmona P., “Existence and uniqueness of an invariant measure for a chain of oscillators in contact with two heat baths”, Stochastic Processes Appl., 117:8 (2007), 1076–1092 | DOI | MR | Zbl

[14] Cuneo N., Eckmann J.-P., “Non-equilibrium steady states for chains of four rotors”, Commun. Math. Phys., 345:1 (2016), 185–221 | DOI | MR | Zbl

[15] Cuneo N., Eckmann J.-P., Poquet C., “Non-equilibrium steady state and subgeometric ergodicity for a chain of three coupled rotors”, Nonlinearity, 28:7 (2015), 2397–2421 | DOI | MR | Zbl

[16] Dolgopyat D., Liverani C., “Energy transfer in a fast–slow Hamiltonian system”, Commun. Math. Phys., 308:1 (2011), 201–225 | DOI | MR | Zbl

[17] Dymov A. V., “Dissipativnye effekty v odnoi lineinoi lagranzhevoi sisteme s beskonechnym chislom stepenei svobody”, Izv. RAN. Ser. mat., 76:6 (2012), 45–80 | DOI | MR | Zbl

[18] Dymov A., Statistical mechanics of nonequilibrium systems of rotators with alternated spins, E-print, 2014, arXiv: 1403.1219[math-ph]

[19] Dymov A., “Nonequilibrium statistical mechanics of Hamiltonian rotators with alternated spins”, J. Stat. Phys., 158:4 (2015), 968–1006 | DOI | MR | Zbl

[20] Dymov A., “Nonequilibrium statistical mechanics of weakly stochastically perturbed system of oscillators”, Ann. Henri Poincaré, 17:7 (2016), 1825–1882 | DOI | MR | Zbl

[21] Eckmann J.-P., Hairer M., “Non-equilibrium statistical mechanics of strongly anharmonic chains of oscillators”, Commun. Math. Phys., 212:1 (2000), 105–164 | DOI | MR | Zbl

[22] Eckmann J.-P., Pillet C.-A., Rey-Bellet L., “Non-equilibrium statistical mechanics of anharmonic chains coupled to two heat baths at different temperatures”, Commun. Math. Phys., 201:3 (1999), 657–697 | DOI | MR | Zbl

[23] Freidlin M. I., Wentzell A. D., “Averaging principle for stochastic perturbations of multifrequency systems”, Stoch. Dyn., 3:3 (2003), 393–408 | DOI | MR | Zbl

[24] Freidlin M. I., Wentzell A. D., “Long-time behavior of weakly coupled oscillators”, J. Stat. Phys., 123:6 (2006), 1311–1337 | DOI | MR | Zbl

[25] Freidlin M. I., Wentzell A. D., Random perturbations of dynamical systems, 3rd ed., Springer, Berlin, 2012 | MR | Zbl

[26] Hairer M., Mattingly J. C., “Slow energy dissipation in anharmonic oscillator chains”, Commun. Pure Appl. Math., 62:8 (2009), 999–1032 | DOI | MR | Zbl

[27] Karatzas I., Shreve S., Brownian motion and stochastic calculus, 2nd ed., Springer, New York, 1991 | MR | Zbl

[28] Khasminskii R. Z., “O printsipe usredneniya dlya stokhasticheskikh differentsialnykh uravnenii Ito”, Kibernetika, 4 (1968), 260–279

[29] Khasminskii R., Stochastic stability of differential equations, 2nd ed., Springer, Berlin, 2012 | MR | Zbl

[30] Krylov N. V., Upravlyaemye protsessy diffuzionnogo tipa, Nauka, M., 1977 | MR

[31] Kuksin S. B., “Damped-driven KdV and effective equations for long-time behaviour of its solutions”, Geom. Funct. Anal., 20:6 (2010), 1431–1463 | DOI | MR | Zbl

[32] Kuksin S. B., “Weakly nonlinear stochastic CGL equations”, Ann. Inst. Henri Poincaré. Probab. Stat., 49:4 (2013), 1033–1056 | DOI | MR | Zbl

[33] Kuksin S., Maiocchi A., Resonant averaging for weakly nonlinear stochastic Schrodinger equations, E-print, 2013, arXiv: 1309.5022[math-ph]

[34] Kuksin S. B., Piatnitski A. L., “Khasminskii–Whitham averaging for randomly perturbed KdV equation”, J. Math. Pures Appl., 89:4 (2008), 400–428 | DOI | MR | Zbl

[35] Kuksin S., Shirikyan A., Mathematics of two-dimensional turbulence, Cambridge Univ. Press, Cambridge, 2012 | MR | Zbl

[36] Lepri S., Livi R., Politi A., “Thermal conduction in classical low-dimensional lattices”, Phys. Rep., 377:1 (2003), 1–80 | DOI | MR

[37] Liverani C., Olla S., “Toward the Fourier law for a weakly interacting anharmonic crystal”, J. Amer. Math. Soc., 25:2 (2012), 555–583 | DOI | MR | Zbl

[38] Mattingly J. C., Stuart A. M., Higham D. J., “Ergodicity for SDEs and approximations: Locally Lipschitz vector fields and degenerate noise”, Stochastic Processes Appl., 101:2 (2002), 185–232 | DOI | MR | Zbl

[39] Øksendal B., Stochastic differential equations: An introduction with applications, Springer, Berlin, 2003 | MR

[40] Pardoux E., Veretennikov A. Yu., “On the Poisson equation and diffusion approximation. I”, Ann. Probab., 29:3 (2001), 1061–1085 | DOI | MR | Zbl

[41] Peierls R., “On the kinetic theory of thermal conduction in crystals”, Selected Scientific Papers of Sir Rudolf Peierls, With commentary, World Scientific, Singapore, 1997, 15–48 | DOI

[42] Rey-Bellet L., Thomas L. E., “Exponential convergence to non-equilibrium stationary states in classical statistical mechanics”, Commun. Math. Phys., 225:2 (2002), 305–329 | DOI | MR | Zbl

[43] Rieder Z., Lebowitz J. L., Lieb E., “Properties of a harmonic crystal in a stationary nonequilibrium state”, J. Math. Phys., 8 (1967), 1073–1078 | DOI

[44] Ruelle D., “A mechanical model for Fourier's law of heat conduction”, Commun. Math. Phys., 311:3 (2012), 755–768 | DOI | MR | Zbl

[45] Saulin S. M., “O dissipativnykh effektakh v beskonechnomernykh gamiltonovykh sistemakh”, TMF, 191 (2017) (to appear)

[46] Shirikyan A., “Local times for solutions of the complex Ginzburg–Landau equation and the inviscid limit”, J. Math. Anal. Appl., 384:1 (2011), 130–137 | DOI | MR | Zbl

[47] Spohn H., Large scale dynamics of interacting particles, Springer, Berlin, 1991 | Zbl

[48] Treschev D., “Oscillator and thermostat”, Discrete Contin. Dyn. Syst., 28:4 (2010), 1693–1712 | DOI | MR | Zbl

[49] Veretennikov A. Yu., “Ob otsenkakh skorosti peremeshivaniya dlya stokhasticheskikh uravnenii”, Teoriya veroyatn. i ee primen., 32:2 (1987), 299–308 | MR | Zbl

[50] Veretennikov A. Yu., “On polynomial mixing bounds for stochastic differential equations”, Stochastic Processes Appl., 70:1 (1997), 115–127 | DOI | MR | Zbl

[51] Yamada T., Watanabe S., “On the uniqueness of solutions of stochastic differential equations”, J. Math. Kyoto Univ., 11 (1971), 155–167 | MR | Zbl