Degenerate billiards
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Modern problems of mechanics, Tome 295 (2016), pp. 53-71.

Voir la notice de l'article provenant de la source Math-Net.Ru

In an ordinary billiard system, trajectories of a Hamiltonian system are elastically reflected after a collision with a hypersurface (scatterer). If the scatterer is a submanifold of codimension more than $1$, we say that the billiard is degenerate. We study those trajectories of degenerate billiards that have an infinite number of collisions with the scatterer. Degenerate billiards appear as limits of systems with elastic reflections or as small-mass limits of systems with singularities in celestial mechanics. We prove the existence of trajectories of such systems that shadow the trajectories of the corresponding degenerate billiards. The proofs are based on a version of the method of an anti-integrable limit.
@article{TM_2016_295_a3,
     author = {S. V. Bolotin},
     title = {Degenerate billiards},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {53--71},
     publisher = {mathdoc},
     volume = {295},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2016_295_a3/}
}
TY  - JOUR
AU  - S. V. Bolotin
TI  - Degenerate billiards
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2016
SP  - 53
EP  - 71
VL  - 295
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2016_295_a3/
LA  - ru
ID  - TM_2016_295_a3
ER  - 
%0 Journal Article
%A S. V. Bolotin
%T Degenerate billiards
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2016
%P 53-71
%V 295
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2016_295_a3/
%G ru
%F TM_2016_295_a3
S. V. Bolotin. Degenerate billiards. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Modern problems of mechanics, Tome 295 (2016), pp. 53-71. http://geodesic.mathdoc.fr/item/TM_2016_295_a3/

[1] Arnold V. I., Kozlov V. V., Neishtadt A. I., Mathematical aspects of classical and celestial mechanics, Encycl. Math. Sci., 3, Springer, Berlin, 1988

[2] Aubry S., Abramovici G., “Chaotic trajectories in the standard map. The concept of anti-integrability”, Physica D, 43:2–3 (1990), 199–219 | DOI | MR | Zbl

[3] Aubry S., MacKay R. S., Baesens C., “Equivalence of uniform hyperbolicity for symplectic twist maps and phonon gap for Frenkel–Kontorova models”, Physica D, 56:2–3 (1992), 123–134 | DOI | MR | Zbl

[4] Bolotin S. V., “Neintegriruemost zadachi $n$ tsentrov pri $n>2$”, Vestn. Mosk. un-ta. Matematika. Mekhanika, 1984, no. 3, 65–68 | MR | Zbl

[5] Bolotin S., “Shadowing chains of collision orbits”, Discrete Contin. Dyn. Syst., 14:2 (2006), 235–260 | DOI | MR | Zbl

[6] Bolotin S., “Symbolic dynamics of almost collision orbits and skew products of symplectic maps”, Nonlinearity, 19:9 (2006), 2041–2063 | DOI | MR | Zbl

[7] Bolotin S., “Degenerate billiards in celestial mechanics”, Regul. Chaotic Dyn. (to appear)

[8] Bolotin S. V., MacKay R. S., “Periodic and chaotic trajectories of the second species for the $n$-centre problem”, Celest. Mech. Dyn. Astron., 77:1 (2000), 49–75 | DOI | MR | Zbl

[9] Bolotin S., MacKay R. S., “Nonplanar second species periodic and chaotic trajectories for the circular restricted three-body problem”, Celest. Mech. Dyn. Astron., 94:4 (2006), 433–449 | DOI | MR | Zbl

[10] Bolotin S., Negrini P., “Regularization and topological entropy for the spatial $n$-center problem”, Ergodic Theory Dyn. Syst., 21:2 (2001), 383–399 | DOI | MR | Zbl

[11] Bolotin S., Negrini P., “Variational approach to second species periodic solutions of Poincaré of the 3 body problem”, Discrete Contin. Dyn. Syst., 33:3 (2013), 1009–1032 | DOI | MR | Zbl

[12] Bolotin S., Negrini P., “Shilnikov lemma for a nondegenerate critical manifold of a Hamiltonian system”, Regul. Chaotic Dyn., 18:6 (2013), 774–800 | DOI | MR | Zbl

[13] Bolotin S. V., Treschev D. V., “Antiintegriruemyi predel”, UMN, 70:6 (2015), 3–62 | DOI | MR | Zbl

[14] Bunimovich L. A., Sinai Ya. G., Chernov N. I., “Statisticheskie svoistva dvumernykh giperbolicheskikh billiardov”, UMN, 46:4 (1991), 43–92 | MR | Zbl

[15] Chen Y.-C., “On topological entropy of billiard tables with small inner scatterers”, Adv. Math., 224:2 (2010), 432–460 | DOI | MR | Zbl

[16] Hénon M., Generating families in the restricted three-body problem, Lect. Notes Phys. Monogr., 52, Springer, Berlin, 1997 | MR

[17] Katok A., Hasselblatt B., Introduction to the modern theory of dynamical systems, Encycl. Math. Appl., 54, Cambridge Univ. Press, Cambridge, 1997 | MR | Zbl

[18] Klein M., Knauf A., Classical planar scattering by Coulombic potentials, Lect. Notes Phys. Monogr., 13, Springer, Berlin, 1992 | MR | Zbl

[19] Kozlov V. V., “Polinomialnye zakony sokhraneniya dlya gaza Lorentsa i gaza Boltsmana–Gibbsa”, UMN, 71:2 (2016), 81–120 | DOI | MR | Zbl

[20] Kozlov V. V., Treshchev D. V., Billiards: A genetic introduction to the dynamics of systems with impacts, Transl. Math. Monogr., 89, Amer. Math. Soc., Providence, RI, 1991 | MR | Zbl

[21] Marco J.-P., Niederman L., “Sur la construction des solutions de seconde espèce dans le problème plan restreint des trois corps”, Ann. Inst. Henri Poincaré. Phys. théor., 62:3 (1995), 211–249 | MR | Zbl

[22] Shilnikov L. P., “Ob odnoi zadache Puankare–Birkgofa”, Mat. sb., 74(116):3 (1967), 378–397 | MR | Zbl

[23] Simányi N., “Conditional proof of the Boltzmann–Sinai ergodic hypothesis”, Invent. math., 177:2 (2009), 381–413 | DOI | MR | Zbl

[24] Sinai Ya. G., “Dinamicheskie sistemy s uprugimi otrazheniyami. Ergodicheskie svoistva rasseivayuschikh bilyardov”, UMN, 25:2 (1970), 141–192 | MR | Zbl