Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2016_295_a3, author = {S. V. Bolotin}, title = {Degenerate billiards}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {53--71}, publisher = {mathdoc}, volume = {295}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2016_295_a3/} }
S. V. Bolotin. Degenerate billiards. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Modern problems of mechanics, Tome 295 (2016), pp. 53-71. http://geodesic.mathdoc.fr/item/TM_2016_295_a3/
[1] Arnold V. I., Kozlov V. V., Neishtadt A. I., Mathematical aspects of classical and celestial mechanics, Encycl. Math. Sci., 3, Springer, Berlin, 1988
[2] Aubry S., Abramovici G., “Chaotic trajectories in the standard map. The concept of anti-integrability”, Physica D, 43:2–3 (1990), 199–219 | DOI | MR | Zbl
[3] Aubry S., MacKay R. S., Baesens C., “Equivalence of uniform hyperbolicity for symplectic twist maps and phonon gap for Frenkel–Kontorova models”, Physica D, 56:2–3 (1992), 123–134 | DOI | MR | Zbl
[4] Bolotin S. V., “Neintegriruemost zadachi $n$ tsentrov pri $n>2$”, Vestn. Mosk. un-ta. Matematika. Mekhanika, 1984, no. 3, 65–68 | MR | Zbl
[5] Bolotin S., “Shadowing chains of collision orbits”, Discrete Contin. Dyn. Syst., 14:2 (2006), 235–260 | DOI | MR | Zbl
[6] Bolotin S., “Symbolic dynamics of almost collision orbits and skew products of symplectic maps”, Nonlinearity, 19:9 (2006), 2041–2063 | DOI | MR | Zbl
[7] Bolotin S., “Degenerate billiards in celestial mechanics”, Regul. Chaotic Dyn. (to appear)
[8] Bolotin S. V., MacKay R. S., “Periodic and chaotic trajectories of the second species for the $n$-centre problem”, Celest. Mech. Dyn. Astron., 77:1 (2000), 49–75 | DOI | MR | Zbl
[9] Bolotin S., MacKay R. S., “Nonplanar second species periodic and chaotic trajectories for the circular restricted three-body problem”, Celest. Mech. Dyn. Astron., 94:4 (2006), 433–449 | DOI | MR | Zbl
[10] Bolotin S., Negrini P., “Regularization and topological entropy for the spatial $n$-center problem”, Ergodic Theory Dyn. Syst., 21:2 (2001), 383–399 | DOI | MR | Zbl
[11] Bolotin S., Negrini P., “Variational approach to second species periodic solutions of Poincaré of the 3 body problem”, Discrete Contin. Dyn. Syst., 33:3 (2013), 1009–1032 | DOI | MR | Zbl
[12] Bolotin S., Negrini P., “Shilnikov lemma for a nondegenerate critical manifold of a Hamiltonian system”, Regul. Chaotic Dyn., 18:6 (2013), 774–800 | DOI | MR | Zbl
[13] Bolotin S. V., Treschev D. V., “Antiintegriruemyi predel”, UMN, 70:6 (2015), 3–62 | DOI | MR | Zbl
[14] Bunimovich L. A., Sinai Ya. G., Chernov N. I., “Statisticheskie svoistva dvumernykh giperbolicheskikh billiardov”, UMN, 46:4 (1991), 43–92 | MR | Zbl
[15] Chen Y.-C., “On topological entropy of billiard tables with small inner scatterers”, Adv. Math., 224:2 (2010), 432–460 | DOI | MR | Zbl
[16] Hénon M., Generating families in the restricted three-body problem, Lect. Notes Phys. Monogr., 52, Springer, Berlin, 1997 | MR
[17] Katok A., Hasselblatt B., Introduction to the modern theory of dynamical systems, Encycl. Math. Appl., 54, Cambridge Univ. Press, Cambridge, 1997 | MR | Zbl
[18] Klein M., Knauf A., Classical planar scattering by Coulombic potentials, Lect. Notes Phys. Monogr., 13, Springer, Berlin, 1992 | MR | Zbl
[19] Kozlov V. V., “Polinomialnye zakony sokhraneniya dlya gaza Lorentsa i gaza Boltsmana–Gibbsa”, UMN, 71:2 (2016), 81–120 | DOI | MR | Zbl
[20] Kozlov V. V., Treshchev D. V., Billiards: A genetic introduction to the dynamics of systems with impacts, Transl. Math. Monogr., 89, Amer. Math. Soc., Providence, RI, 1991 | MR | Zbl
[21] Marco J.-P., Niederman L., “Sur la construction des solutions de seconde espèce dans le problème plan restreint des trois corps”, Ann. Inst. Henri Poincaré. Phys. théor., 62:3 (1995), 211–249 | MR | Zbl
[22] Shilnikov L. P., “Ob odnoi zadache Puankare–Birkgofa”, Mat. sb., 74(116):3 (1967), 378–397 | MR | Zbl
[23] Simányi N., “Conditional proof of the Boltzmann–Sinai ergodic hypothesis”, Invent. math., 177:2 (2009), 381–413 | DOI | MR | Zbl
[24] Sinai Ya. G., “Dinamicheskie sistemy s uprugimi otrazheniyami. Ergodicheskie svoistva rasseivayuschikh bilyardov”, UMN, 25:2 (1970), 141–192 | MR | Zbl