Generalizations of the Kovalevskaya case and quaternions
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Modern problems of mechanics, Tome 295 (2016), pp. 41-52

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper provides a detailed description of various reduction schemes in rigid body dynamics. The analysis of one of such nontrivial reductions makes it possible to put the cases already found in order and to obtain new generalizations of the Kovalevskaya case to $e(3)$. Note that the indicated reduction allows one to obtain in a natural way some singular additive terms that were proposed earlier by D. N. Goryachev.
@article{TM_2016_295_a2,
     author = {I. A. Bizyaev and A. V. Borisov and I. S. Mamaev},
     title = {Generalizations of the {Kovalevskaya} case and quaternions},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {41--52},
     publisher = {mathdoc},
     volume = {295},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2016_295_a2/}
}
TY  - JOUR
AU  - I. A. Bizyaev
AU  - A. V. Borisov
AU  - I. S. Mamaev
TI  - Generalizations of the Kovalevskaya case and quaternions
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2016
SP  - 41
EP  - 52
VL  - 295
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2016_295_a2/
LA  - ru
ID  - TM_2016_295_a2
ER  - 
%0 Journal Article
%A I. A. Bizyaev
%A A. V. Borisov
%A I. S. Mamaev
%T Generalizations of the Kovalevskaya case and quaternions
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2016
%P 41-52
%V 295
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2016_295_a2/
%G ru
%F TM_2016_295_a2
I. A. Bizyaev; A. V. Borisov; I. S. Mamaev. Generalizations of the Kovalevskaya case and quaternions. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Modern problems of mechanics, Tome 295 (2016), pp. 41-52. http://geodesic.mathdoc.fr/item/TM_2016_295_a2/