Generalizations of the Kovalevskaya case and quaternions
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Modern problems of mechanics, Tome 295 (2016), pp. 41-52.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper provides a detailed description of various reduction schemes in rigid body dynamics. The analysis of one of such nontrivial reductions makes it possible to put the cases already found in order and to obtain new generalizations of the Kovalevskaya case to $e(3)$. Note that the indicated reduction allows one to obtain in a natural way some singular additive terms that were proposed earlier by D. N. Goryachev.
@article{TM_2016_295_a2,
     author = {I. A. Bizyaev and A. V. Borisov and I. S. Mamaev},
     title = {Generalizations of the {Kovalevskaya} case and quaternions},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {41--52},
     publisher = {mathdoc},
     volume = {295},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2016_295_a2/}
}
TY  - JOUR
AU  - I. A. Bizyaev
AU  - A. V. Borisov
AU  - I. S. Mamaev
TI  - Generalizations of the Kovalevskaya case and quaternions
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2016
SP  - 41
EP  - 52
VL  - 295
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2016_295_a2/
LA  - ru
ID  - TM_2016_295_a2
ER  - 
%0 Journal Article
%A I. A. Bizyaev
%A A. V. Borisov
%A I. S. Mamaev
%T Generalizations of the Kovalevskaya case and quaternions
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2016
%P 41-52
%V 295
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2016_295_a2/
%G ru
%F TM_2016_295_a2
I. A. Bizyaev; A. V. Borisov; I. S. Mamaev. Generalizations of the Kovalevskaya case and quaternions. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Modern problems of mechanics, Tome 295 (2016), pp. 41-52. http://geodesic.mathdoc.fr/item/TM_2016_295_a2/

[1] Birtea P., Caşu I., Comănescu D., “Hamilton–Poisson formulation for the rotational motion of a rigid body in the presence of an axisymmetric force field and a gyroscopic torque”, Phys. Lett. A, 375:45 (2011), 3941–3945 | DOI | MR | Zbl

[2] Bobenko A. I., Reyman A. G., Semenov-Tian-Shansky M. A., “The Kowalewski top 99 years later: A Lax pair, generalizations and explicit solutions”, Commun. Math. Phys., 122:2 (1989), 321–354 | DOI | MR

[3] Borisov A. V., Mamaev I. S., “Nelineinye skobki Puassona i izomorfizmy v dinamike”, Regulyarnaya i khaoticheskaya dinamika, 2:3–4 (1997), 72–89 | MR | Zbl

[4] Borisov A. V., Mamaev I. S., Puassonovy struktury i algebry Li v gamiltonovoi mekhanike, Regulyarnaya i khaoticheskaya dinamika, Izhevsk, 1999 | MR

[5] Borisov A. V., Mamaev I. S., “Generalization of the Goryachev–Chaplygin case”, Regul. Chaotic Dyn., 7:1 (2002), 21–30 | DOI | MR | Zbl

[6] Borisov A. V., Mamaev I. S., Dinamika tverdogo tela: Gamiltonovy metody, integriruemost, khaos, In-t kompyut. issled., M.–Izhevsk, 2005 | MR

[7] Borisov A. V., Mamaev I. S., “Symmetries and reduction in nonholonomic mechanics”, Regul. Chaotic Dyn., 20:5 (2015), 553–604 | DOI | MR | Zbl

[8] Chaplygin S. A., “O nekotorykh sluchayakh dvizheniya tverdogo tela v zhidkosti. Statya pervaya”, Sobr. soch., v. 1, Gostekhizdat, M.–L., 1948, 136–193

[9] Dragović V., Kukić K., “Systems of Kowalevski type and discriminantly separable polynomials”, Regul. Chaotic Dyn., 19:2 (2014), 162–184 | DOI | MR | Zbl

[10] Goryachev D. N., “Novye sluchai dvizheniya tverdogo tela vokrug nepodvizhnoi tochki”, Varshav. univ. izv., 1915, no. 3, 3–14

[11] Goryachev D. N., “Novye sluchai integriruemosti dinamicheskikh uravnenii Eilera”, Varshav. univ. izv., 1916, no. 3, 3–15

[12] Kharlamov M. P., “Extensions of the Appelrot classes for the generalized gyrostat in a double force field”, Regul. Chaotic Dyn., 19:2 (2014), 226–244 | DOI | MR | Zbl

[13] Kharlamov M. P., Yehia H. M., “Separation of variables in one case of motion of a gyrostat acted upon by gravity and magnetic fields”, Egypt. J. Basic Appl. Sci., 2:3 (2015), 236–242 | DOI | MR

[14] Reiman A. G., Semenov-Tyan-Shanskii M. A., “Laksovo predstavlenie so spektralnym parametrom dlya volchka Kovalevskoi i ego obobschenii”, Funkts. analiz i ego pril., 22:2 (1988), 87–88 | MR

[15] Ryabov P. E., “Yavnoe integrirovanie i topologiya sluchaya D. N. Goryacheva”, DAN, 439:3 (2011), 315–318 | MR | Zbl

[16] Ryabov P. E., “Fazovaya topologiya odnoi neprivodimoi integriruemoi zadachi dinamiki tverdogo tela”, TMF, 176:2 (2013), 205–221 | DOI | MR | Zbl

[17] Sokolov V. V., Tsyganov A. V., “Pary Laksa dlya deformirovannykh volchkov Kovalevskoi i Goryacheva–Chaplygina”, TMF, 131:1 (2002), 118–125 | DOI | MR | Zbl

[18] Tsiganov A. V., “On the Chaplygin system on the sphere with velocity dependent potential”, J. Geom. Phys., 92 (2015), 94–99 | DOI | MR | Zbl

[19] Valent G., “On a class of integrable systems with a quartic first integral”, Regul. Chaotic Dyn., 18:4 (2013), 394–424 | DOI | MR | Zbl

[20] Yakhya Kh. M., “Novye integriruemye sluchai zadachi o dvizhenii girostata”, Vestn. Mosk. un-ta. Matematika. Mekhanika, 1987, no. 4, 88–90

[21] Yehia H. M., “New integrable problems in the dynamics of rigid bodies with the Kovalevskaya configuration. I: The case of axisymmetric forces”, Mech. Res. Commun., 23:5 (1996), 423–427 | DOI | MR

[22] Yehia H. M., Elmandouh A. A., “New conditional integrable cases of motion of a rigid body with Kovalevskaya's configuration”, J. Phys. A: Math. Theor., 44:1 (2011), 012001 | DOI | MR | Zbl