Generalizations of the Kovalevskaya case and quaternions
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Modern problems of mechanics, Tome 295 (2016), pp. 41-52
Voir la notice de l'article provenant de la source Math-Net.Ru
This paper provides a detailed description of various reduction schemes in rigid body dynamics. The analysis of one of such nontrivial reductions makes it possible to put the cases already found in order and to obtain new generalizations of the Kovalevskaya case to $e(3)$. Note that the indicated reduction allows one to obtain in a natural way some singular additive terms that were proposed earlier by D. N. Goryachev.
@article{TM_2016_295_a2,
author = {I. A. Bizyaev and A. V. Borisov and I. S. Mamaev},
title = {Generalizations of the {Kovalevskaya} case and quaternions},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {41--52},
publisher = {mathdoc},
volume = {295},
year = {2016},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TM_2016_295_a2/}
}
TY - JOUR AU - I. A. Bizyaev AU - A. V. Borisov AU - I. S. Mamaev TI - Generalizations of the Kovalevskaya case and quaternions JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2016 SP - 41 EP - 52 VL - 295 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2016_295_a2/ LA - ru ID - TM_2016_295_a2 ER -
I. A. Bizyaev; A. V. Borisov; I. S. Mamaev. Generalizations of the Kovalevskaya case and quaternions. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Modern problems of mechanics, Tome 295 (2016), pp. 41-52. http://geodesic.mathdoc.fr/item/TM_2016_295_a2/