Homogenization of the equations of state for a~heterogeneous layered medium consisting of two creep materials
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Modern problems of mechanics, Tome 295 (2016), pp. 229-240

Voir la notice de l'article provenant de la source Math-Net.Ru

A mathematical model that describes the joint motion of periodically alternating layers of two isotropic creep materials is considered. It is assumed that all layers are parallel to one of the coordinate planes and the thickness of any two adjacent layers is $\varepsilon$. For this model, the corresponding homogenized model for $\varepsilon\to0$ is constructed, which describes the behavior of a homogeneous creep material.
@article{TM_2016_295_a13,
     author = {A. S. Shamaev and V. V. Shumilova},
     title = {Homogenization of the equations of state for a~heterogeneous layered medium consisting of two creep materials},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {229--240},
     publisher = {mathdoc},
     volume = {295},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2016_295_a13/}
}
TY  - JOUR
AU  - A. S. Shamaev
AU  - V. V. Shumilova
TI  - Homogenization of the equations of state for a~heterogeneous layered medium consisting of two creep materials
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2016
SP  - 229
EP  - 240
VL  - 295
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2016_295_a13/
LA  - ru
ID  - TM_2016_295_a13
ER  - 
%0 Journal Article
%A A. S. Shamaev
%A V. V. Shumilova
%T Homogenization of the equations of state for a~heterogeneous layered medium consisting of two creep materials
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2016
%P 229-240
%V 295
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2016_295_a13/
%G ru
%F TM_2016_295_a13
A. S. Shamaev; V. V. Shumilova. Homogenization of the equations of state for a~heterogeneous layered medium consisting of two creep materials. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Modern problems of mechanics, Tome 295 (2016), pp. 229-240. http://geodesic.mathdoc.fr/item/TM_2016_295_a13/