Homogenization of the equations of state for a~heterogeneous layered medium consisting of two creep materials
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Modern problems of mechanics, Tome 295 (2016), pp. 229-240.

Voir la notice de l'article provenant de la source Math-Net.Ru

A mathematical model that describes the joint motion of periodically alternating layers of two isotropic creep materials is considered. It is assumed that all layers are parallel to one of the coordinate planes and the thickness of any two adjacent layers is $\varepsilon$. For this model, the corresponding homogenized model for $\varepsilon\to0$ is constructed, which describes the behavior of a homogeneous creep material.
@article{TM_2016_295_a13,
     author = {A. S. Shamaev and V. V. Shumilova},
     title = {Homogenization of the equations of state for a~heterogeneous layered medium consisting of two creep materials},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {229--240},
     publisher = {mathdoc},
     volume = {295},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2016_295_a13/}
}
TY  - JOUR
AU  - A. S. Shamaev
AU  - V. V. Shumilova
TI  - Homogenization of the equations of state for a~heterogeneous layered medium consisting of two creep materials
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2016
SP  - 229
EP  - 240
VL  - 295
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2016_295_a13/
LA  - ru
ID  - TM_2016_295_a13
ER  - 
%0 Journal Article
%A A. S. Shamaev
%A V. V. Shumilova
%T Homogenization of the equations of state for a~heterogeneous layered medium consisting of two creep materials
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2016
%P 229-240
%V 295
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2016_295_a13/
%G ru
%F TM_2016_295_a13
A. S. Shamaev; V. V. Shumilova. Homogenization of the equations of state for a~heterogeneous layered medium consisting of two creep materials. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Modern problems of mechanics, Tome 295 (2016), pp. 229-240. http://geodesic.mathdoc.fr/item/TM_2016_295_a13/

[1] Brekhovskikh L. M., Godin O. A., Akustika sloistykh sred, Nauka, M., 1989

[2] Kristensen R., Vvedenie v mekhaniku kompozitov, Mir, M., 1982

[3] Bakhvalov N. S., Panasenko G. P., Osrednenie protsessov v periodicheskikh sredakh: Matematicheskie zadachi mekhaniki kompozitsionnykh materialov, Nauka, M., 1984 | MR

[4] Pobedrya B. E., Mekhanika kompozitsionnykh materialov, Izd-vo MGU, M., 1984

[5] Bardzokas D. I., Zobnin A. I., Matematicheskoe modelirovanie fizicheskikh protsessov v kompozitsionnykh materialakh periodicheskoi struktury, URSS, M., 2003 | MR

[6] Orlik J., Transmission and homogenization in hereditary viscoelasticity with aging and shrinkage, Ber. Math., Shaker, Aachen, 2000

[7] Shamaev A. S., Shumilova V. V., “O spektre odnomernykh kolebanii sloistogo kompozita s komponentami iz uprugogo i vyazkouprugogo materialov”, Sib. zhurn. industr. matematiki, 15:4 (2012), 124–134

[8] Shamaev A. S., Shumilova V. V., “O spektre odnomernykh kolebanii v srede iz sloev uprugogo materiala i vyazkouprugogo materiala Kelvina–Foigta”, ZhVMiMF, 53:2 (2013), 282–290 | Zbl

[9] Rabotnov Yu. N., Mekhanika deformiruemogo tverdogo tela, Nauka, M., 1988

[10] Ilyushin A. A., Pobedrya B. E., Osnovy matematicheskoi teorii termovyazkouprugosti, Nauka, M., 1970 | MR