Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2016_295_a0, author = {G. A. Alekseev}, title = {Integrable and non-integrable structures in {Einstein--Maxwell} equations with {Abelian} isometry group~$\mathcal G_2$}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {7--33}, publisher = {mathdoc}, volume = {295}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2016_295_a0/} }
TY - JOUR AU - G. A. Alekseev TI - Integrable and non-integrable structures in Einstein--Maxwell equations with Abelian isometry group~$\mathcal G_2$ JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2016 SP - 7 EP - 33 VL - 295 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2016_295_a0/ LA - ru ID - TM_2016_295_a0 ER -
%0 Journal Article %A G. A. Alekseev %T Integrable and non-integrable structures in Einstein--Maxwell equations with Abelian isometry group~$\mathcal G_2$ %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2016 %P 7-33 %V 295 %I mathdoc %U http://geodesic.mathdoc.fr/item/TM_2016_295_a0/ %G ru %F TM_2016_295_a0
G. A. Alekseev. Integrable and non-integrable structures in Einstein--Maxwell equations with Abelian isometry group~$\mathcal G_2$. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Modern problems of mechanics, Tome 295 (2016), pp. 7-33. http://geodesic.mathdoc.fr/item/TM_2016_295_a0/
[1] Aleksejev G. A., “Soliton configurations of Einstein–Maxwell fields”, 9th Int. Conf. on General Relativity and Gravitation, Abstr. Contrib. Pap., v. 1, Friedrich Schiller Univ., Jena, 1980, 2–3
[2] Alekseev G. A., “$N$-solitonnye resheniya uravnenii Einshteina–Maksvella”, Pisma v ZhETF, 32:4 (1980), 301–303
[3] Alekseev G. A., “O solitonnykh resheniyakh uravnenii Einshteina v vakuume”, DAN SSSR, 256:4 (1981), 827–830 | MR
[4] Alekseev G. A., “Solitonnye konfiguratsii vzaimodeistvuyuschikh bezmassovykh polei”, DAN SSSR, 268:6 (1983), 1347–1351 | MR
[5] Alekseev G. A., “Metod obratnoi zadachi rasseyaniya i singulyarnye integralnye uravneniya dlya vzaimodeistvuyuschikh bezmassovykh polei”, DAN SSSR, 283:3 (1985), 577–582 | MR
[6] Alekseev G. A., “Tochnye resheniya v obschei teorii otnositelnosti”, Tr. MIAN, 176, 1987, 211–258 | MR | Zbl
[7] Alekseev G. A., “Explicit form of the extended family of electrovacuum solutions with arbitrary number of parameters”, 13th Int. Conf. on General Relativity and Gravitation, Abstr. Contrib. Pap., eds. P. W. Lamberty, O. E. Ortiz, Huerta Grande, Cordoba, Argentina, 1992, 3–4 | Zbl
[8] Alekseev G. A., “Gravitational solitons and monodromy transform approach to solution of integrable reductions of Einstein equations”, Physica D, 152–153 (2001), 97–103 ; arXiv: gr-qc/0001012 | DOI | MR | Zbl
[9] Alekseev G. A., “Thirty years of studies of integrable reductions of Einstein's field equations”, Proc. Twelfth Marcel Grossmann Meeting on General Relativity, Part A: Plenary and review talks, eds. T. Damour, R. T. Jantzen, R. Ruffini, World Scientific, New Jersey, 2012, 645–666 ; arXiv: 1011.3846v1[gr-qc] | DOI
[10] Alekseev G. A., “Monodromy transform and the integral equation method for solving the string gravity and supergravity equations in four and higher dimensions”, Phys. Rev. D, 88:2 (2013), 021503 ; arXiv: 1205.6238v1[hep-th] | DOI
[11] Alekseev G., “Travelling waves in expanding spatially homogeneous space–times”, Class. Quantum Grav., 32:7 (2015), 075009 ; arXiv: 1411.3023v1[gr-qc] | DOI | MR | Zbl
[12] Alekseev G. A., “Collision of strong gravitational and electromagnetic waves in the expanding universe”, Phys. Rev. D, 93:6 (2016), 061501 ; arXiv: 1511.03335v2[gr-qc] | DOI | MR
[13] Alekseev G. A., Belinski V. A., “Equilibrium configurations of two charged masses in general relativity”, Phys. Rev. D, 76:2 (2007), 021501 ; arXiv: 0706.1981v1[gr-qc] | DOI | MR | Zbl
[14] Alekseev G. A., Garcia A. A., “Schwarzschild black hole immersed in a homogeneous electromagnetic field”, Phys. Rev. D, 53:4 (1996), 1853–1867 | DOI | MR
[15] Belinskii V. A., Zakharov V. E., “Integrirovanie uravnenii Einshteina metodom obratnoi zadachi rasseyaniya i vychislenie tochnykh solitonnykh reshenii”, ZhETF, 75:6 (1978), 1953–1971 | MR
[16] Belinskii V. A., Zakharov V. E., “Statsionarnye gravitatsionnye solitony s aksialnoi simmetriei”, ZhETF, 77:1 (1979), 3–19 | MR
[17] Carter B., “Black hole equilibrium states”, Black holes (Les Houches, 1972), eds. C. DeWitt, B. S. DeWitt, Gordon and Breach, New York, 1973, 57–214 | MR
[18] Ernst F. J., “New formulation of the axially symmetric gravitational field problem”, Phys. Rev., 167:5 (1968), 1175–1178 | DOI | MR
[19] Gaffet B., “The Einstein equations with two commuting Killing vectors”, Class. Quantum Grav., 7:11 (1990), 2017–2044 | DOI | MR | Zbl
[20] Geroch R., “A method for generating new solutions of Einstein's equation. II”, J. Math. Phys., 13:3 (1972), 394–404 | DOI | MR | Zbl
[21] Gourgoulhon E., Bonazzola S., “Noncircular axisymmetric stationary spacetimes”, Phys. Rev. D, 48:6 (1993), 2635–2652 | DOI | MR
[22] Griffiths J. B., Podolský J., Exact space–times in Einstein's general relativity, Cambridge Monogr. Math. Phys., Cambridge Univ. Press, Cambridge, 2009 | MR | Zbl
[23] Hauser I., Ernst F. J., “Integral equation method for effecting Kinnersley–Chitre transformations”, Phys. Rev. D, 20:2 (1979), 362–369 | DOI | MR
[24] Hauser I., Ernst F. J., “Integral equation method for effecting Kinnersley–Chitre transformations. II”, Phys. Rev. D, 20:8 (1979), 1783–1790 | DOI | MR
[25] Hauser I., Ernst F. J., “On the transformation of one electrovac spacetime into another”, 9th Int. Conf. on General Relativity and Gravitation, Abstr. Contrib. Pap., v. 1, Friedrich Schiller Univ., Jena, 1980, 84–85
[26] Kinnersley W., “Generation of stationary Einstein–Maxwell fields”, J. Math. Phys., 14:5 (1973), 651–653 | DOI | MR
[27] Kinnersley W., “Symmetries of the stationary Einstein–Maxwell field equations. I”, J. Math. Phys., 18:8 (1977), 1529–1537 | DOI
[28] Kinnersley W., Chitre D. M., “Symmetries of the stationary Einstein–Maxwell field equations. II”, J. Math. Phys., 18:8 (1977), 1538–1542 | DOI
[29] Kinnersley W., Chitre D. M., “Symmetries of the stationary Einstein–Maxwell field equations. III”, J. Math. Phys., 19:9 (1978), 1926–1931 | DOI
[30] Kinnersley W., Chitre D. M., “Symmetries of the stationary Einstein–Maxwell field equations. IV: Transformations which preserve asymptotic flatness”, J. Math. Phys., 19:10 (1978), 2037–2042 | DOI
[31] Lewis T., “Some special solutions of the equations of axially symmetric gravitational fields”, Proc. R. Soc. London A, 136 (1932), 176–192 | DOI | Zbl
[32] Maison D., “Are the stationary, axially symmetric Einstein equations completely integrable?”, Phys. Rev. Lett., 41:8 (1978), 521–522 | DOI | MR
[33] Papapetrou A., “Champs gravitationnels stationnaires à symétrie axiale”, Ann. Inst. Henri Poincaré. Phys. théor., 4:2 (1966), 83–105
[34] Sibgatullin N. R., Kolebaniya i volny v silnykh gravitatsionnykh i elektromagnitnykh polyakh, Nauka, M., 1984 | MR
[35] Stephani H., Kramer D., MacCallum M., Hoenselaers C., Herlt E., Exact solutions of Einstein's field equations, 2nd ed., Cambridge Univ. Press, Cambridge, 2009 | Zbl