Integrable and non-integrable structures in Einstein--Maxwell equations with Abelian isometry group~$\mathcal G_2$
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Modern problems of mechanics, Tome 295 (2016), pp. 7-33.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the classes of electrovacuum Einstein–Maxwell fields (with a cosmological constant) for which the metrics admit an Abelian two-dimensional isometry group $\mathcal G_2$ with nonnull orbits and electromagnetic fields possess the same symmetry. For the fields with such symmetries, we describe the structures of the so-called non-dynamical degrees of freedom, whose presence, just as the presence of a cosmological constant, changes (in a strikingly similar way) the vacuum and electrovacuum dynamical equations and destroys their well-known integrable structures. We find modifications of the known reduced forms of Einstein–Maxwell equations, namely, the Ernst equations and the self-dual Kinnersley equations, in which the presence of non-dynamical degrees of freedom is taken into account, and consider the following subclasses of fields with different non-dynamical degrees of freedom: (i) vacuum metrics with cosmological constant; (ii) space–time geometries in vacuum with isometry groups $\mathcal G_2$ that are not orthogonally transitive; and (iii) electrovacuum fields with more general structures of electromagnetic fields than in the known integrable cases. For each of these classes of fields, in the case when the two-dimensional metrics on the orbits of the isometry group $\mathcal G_2$ are diagonal, all field equations can be reduced to one nonlinear equation for one real function $\alpha(x^1,x^2)$ that characterizes the area element on these orbits. Simple examples of solutions for each of these classes are presented.
@article{TM_2016_295_a0,
     author = {G. A. Alekseev},
     title = {Integrable and non-integrable structures in {Einstein--Maxwell} equations with {Abelian} isometry group~$\mathcal G_2$},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {7--33},
     publisher = {mathdoc},
     volume = {295},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2016_295_a0/}
}
TY  - JOUR
AU  - G. A. Alekseev
TI  - Integrable and non-integrable structures in Einstein--Maxwell equations with Abelian isometry group~$\mathcal G_2$
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2016
SP  - 7
EP  - 33
VL  - 295
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2016_295_a0/
LA  - ru
ID  - TM_2016_295_a0
ER  - 
%0 Journal Article
%A G. A. Alekseev
%T Integrable and non-integrable structures in Einstein--Maxwell equations with Abelian isometry group~$\mathcal G_2$
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2016
%P 7-33
%V 295
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2016_295_a0/
%G ru
%F TM_2016_295_a0
G. A. Alekseev. Integrable and non-integrable structures in Einstein--Maxwell equations with Abelian isometry group~$\mathcal G_2$. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Modern problems of mechanics, Tome 295 (2016), pp. 7-33. http://geodesic.mathdoc.fr/item/TM_2016_295_a0/

[1] Aleksejev G. A., “Soliton configurations of Einstein–Maxwell fields”, 9th Int. Conf. on General Relativity and Gravitation, Abstr. Contrib. Pap., v. 1, Friedrich Schiller Univ., Jena, 1980, 2–3

[2] Alekseev G. A., “$N$-solitonnye resheniya uravnenii Einshteina–Maksvella”, Pisma v ZhETF, 32:4 (1980), 301–303

[3] Alekseev G. A., “O solitonnykh resheniyakh uravnenii Einshteina v vakuume”, DAN SSSR, 256:4 (1981), 827–830 | MR

[4] Alekseev G. A., “Solitonnye konfiguratsii vzaimodeistvuyuschikh bezmassovykh polei”, DAN SSSR, 268:6 (1983), 1347–1351 | MR

[5] Alekseev G. A., “Metod obratnoi zadachi rasseyaniya i singulyarnye integralnye uravneniya dlya vzaimodeistvuyuschikh bezmassovykh polei”, DAN SSSR, 283:3 (1985), 577–582 | MR

[6] Alekseev G. A., “Tochnye resheniya v obschei teorii otnositelnosti”, Tr. MIAN, 176, 1987, 211–258 | MR | Zbl

[7] Alekseev G. A., “Explicit form of the extended family of electrovacuum solutions with arbitrary number of parameters”, 13th Int. Conf. on General Relativity and Gravitation, Abstr. Contrib. Pap., eds. P. W. Lamberty, O. E. Ortiz, Huerta Grande, Cordoba, Argentina, 1992, 3–4 | Zbl

[8] Alekseev G. A., “Gravitational solitons and monodromy transform approach to solution of integrable reductions of Einstein equations”, Physica D, 152–153 (2001), 97–103 ; arXiv: gr-qc/0001012 | DOI | MR | Zbl

[9] Alekseev G. A., “Thirty years of studies of integrable reductions of Einstein's field equations”, Proc. Twelfth Marcel Grossmann Meeting on General Relativity, Part A: Plenary and review talks, eds. T. Damour, R. T. Jantzen, R. Ruffini, World Scientific, New Jersey, 2012, 645–666 ; arXiv: 1011.3846v1[gr-qc] | DOI

[10] Alekseev G. A., “Monodromy transform and the integral equation method for solving the string gravity and supergravity equations in four and higher dimensions”, Phys. Rev. D, 88:2 (2013), 021503 ; arXiv: 1205.6238v1[hep-th] | DOI

[11] Alekseev G., “Travelling waves in expanding spatially homogeneous space–times”, Class. Quantum Grav., 32:7 (2015), 075009 ; arXiv: 1411.3023v1[gr-qc] | DOI | MR | Zbl

[12] Alekseev G. A., “Collision of strong gravitational and electromagnetic waves in the expanding universe”, Phys. Rev. D, 93:6 (2016), 061501 ; arXiv: 1511.03335v2[gr-qc] | DOI | MR

[13] Alekseev G. A., Belinski V. A., “Equilibrium configurations of two charged masses in general relativity”, Phys. Rev. D, 76:2 (2007), 021501 ; arXiv: 0706.1981v1[gr-qc] | DOI | MR | Zbl

[14] Alekseev G. A., Garcia A. A., “Schwarzschild black hole immersed in a homogeneous electromagnetic field”, Phys. Rev. D, 53:4 (1996), 1853–1867 | DOI | MR

[15] Belinskii V. A., Zakharov V. E., “Integrirovanie uravnenii Einshteina metodom obratnoi zadachi rasseyaniya i vychislenie tochnykh solitonnykh reshenii”, ZhETF, 75:6 (1978), 1953–1971 | MR

[16] Belinskii V. A., Zakharov V. E., “Statsionarnye gravitatsionnye solitony s aksialnoi simmetriei”, ZhETF, 77:1 (1979), 3–19 | MR

[17] Carter B., “Black hole equilibrium states”, Black holes (Les Houches, 1972), eds. C. DeWitt, B. S. DeWitt, Gordon and Breach, New York, 1973, 57–214 | MR

[18] Ernst F. J., “New formulation of the axially symmetric gravitational field problem”, Phys. Rev., 167:5 (1968), 1175–1178 | DOI | MR

[19] Gaffet B., “The Einstein equations with two commuting Killing vectors”, Class. Quantum Grav., 7:11 (1990), 2017–2044 | DOI | MR | Zbl

[20] Geroch R., “A method for generating new solutions of Einstein's equation. II”, J. Math. Phys., 13:3 (1972), 394–404 | DOI | MR | Zbl

[21] Gourgoulhon E., Bonazzola S., “Noncircular axisymmetric stationary spacetimes”, Phys. Rev. D, 48:6 (1993), 2635–2652 | DOI | MR

[22] Griffiths J. B., Podolský J., Exact space–times in Einstein's general relativity, Cambridge Monogr. Math. Phys., Cambridge Univ. Press, Cambridge, 2009 | MR | Zbl

[23] Hauser I., Ernst F. J., “Integral equation method for effecting Kinnersley–Chitre transformations”, Phys. Rev. D, 20:2 (1979), 362–369 | DOI | MR

[24] Hauser I., Ernst F. J., “Integral equation method for effecting Kinnersley–Chitre transformations. II”, Phys. Rev. D, 20:8 (1979), 1783–1790 | DOI | MR

[25] Hauser I., Ernst F. J., “On the transformation of one electrovac spacetime into another”, 9th Int. Conf. on General Relativity and Gravitation, Abstr. Contrib. Pap., v. 1, Friedrich Schiller Univ., Jena, 1980, 84–85

[26] Kinnersley W., “Generation of stationary Einstein–Maxwell fields”, J. Math. Phys., 14:5 (1973), 651–653 | DOI | MR

[27] Kinnersley W., “Symmetries of the stationary Einstein–Maxwell field equations. I”, J. Math. Phys., 18:8 (1977), 1529–1537 | DOI

[28] Kinnersley W., Chitre D. M., “Symmetries of the stationary Einstein–Maxwell field equations. II”, J. Math. Phys., 18:8 (1977), 1538–1542 | DOI

[29] Kinnersley W., Chitre D. M., “Symmetries of the stationary Einstein–Maxwell field equations. III”, J. Math. Phys., 19:9 (1978), 1926–1931 | DOI

[30] Kinnersley W., Chitre D. M., “Symmetries of the stationary Einstein–Maxwell field equations. IV: Transformations which preserve asymptotic flatness”, J. Math. Phys., 19:10 (1978), 2037–2042 | DOI

[31] Lewis T., “Some special solutions of the equations of axially symmetric gravitational fields”, Proc. R. Soc. London A, 136 (1932), 176–192 | DOI | Zbl

[32] Maison D., “Are the stationary, axially symmetric Einstein equations completely integrable?”, Phys. Rev. Lett., 41:8 (1978), 521–522 | DOI | MR

[33] Papapetrou A., “Champs gravitationnels stationnaires à symétrie axiale”, Ann. Inst. Henri Poincaré. Phys. théor., 4:2 (1966), 83–105

[34] Sibgatullin N. R., Kolebaniya i volny v silnykh gravitatsionnykh i elektromagnitnykh polyakh, Nauka, M., 1984 | MR

[35] Stephani H., Kramer D., MacCallum M., Hoenselaers C., Herlt E., Exact solutions of Einstein's field equations, 2nd ed., Cambridge Univ. Press, Cambridge, 2009 | Zbl