Double quadrics with large automorphism groups
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Modern problems of mathematics, mechanics, and mathematical physics. II, Tome 294 (2016), pp. 167-190 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We classify nodal Fano threefolds that are double covers of smooth quadrics branched over intersections with quartics and are acted on by finite simple non-abelian groups. We also study their rationality.
@article{TM_2016_294_a9,
     author = {Victor V. Przyjalkowski and Constantin A. Shramov},
     title = {Double quadrics with large automorphism groups},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {167--190},
     year = {2016},
     volume = {294},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2016_294_a9/}
}
TY  - JOUR
AU  - Victor V. Przyjalkowski
AU  - Constantin A. Shramov
TI  - Double quadrics with large automorphism groups
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2016
SP  - 167
EP  - 190
VL  - 294
UR  - http://geodesic.mathdoc.fr/item/TM_2016_294_a9/
LA  - ru
ID  - TM_2016_294_a9
ER  - 
%0 Journal Article
%A Victor V. Przyjalkowski
%A Constantin A. Shramov
%T Double quadrics with large automorphism groups
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2016
%P 167-190
%V 294
%U http://geodesic.mathdoc.fr/item/TM_2016_294_a9/
%G ru
%F TM_2016_294_a9
Victor V. Przyjalkowski; Constantin A. Shramov. Double quadrics with large automorphism groups. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Modern problems of mathematics, mechanics, and mathematical physics. II, Tome 294 (2016), pp. 167-190. http://geodesic.mathdoc.fr/item/TM_2016_294_a9/

[1] Artin M., Mumford D., “Some elementary examples of unirational varieties which are not rational”, Proc. London Math. Soc. Ser. 3, 25 (1972), 75–95 | DOI | MR | Zbl

[2] Aspinwall P. S., Morrison D. R., “Stable singularities in string theory (with an appendix by M. Gross)”, Commun. Math. Phys., 178:1 (1996), 115–134 | DOI | MR | Zbl

[3] Beauville A., “Variétés de Prym et jacobiennes intermediaires”, Ann. sci. Éc. Norm. Supér. Sér. 4, 10 (1977), 309–391 | MR | Zbl

[4] Beauville A., “Non-rationality of the $\mathfrak S_6$-symmetric quartic threefolds”, Rend. Semin. Mat. Univ. Politec. Torino, 71 (2013), 385–388 | MR | Zbl

[5] Burkhardt H., “Untersuchungen aus dem Gebiete der hyperelliptischen Modulfunctionen. Zweiter Theil”, Math. Ann., 38 (1891), 161–224 | DOI | MR

[6] Cheltsov I., Przyjalkowski V., Shramov C., “Quartic double solids with icosahedral symmetry”, Eur. J. Math., 2:1 (2016), 96–119 | DOI | MR | Zbl

[7] Cheltsov I., Shramov C., Two rational nodal quartic threefolds, E-print, 2015, arXiv: 1511.07508[math.AG]

[8] Cheltsov I., Shramov C., Cremona groups and the icosahedron, CRC Press, Boca Raton, FL, 2016 | MR | Zbl

[9] Colliot-Thélène J.-L., Pirutka A., “Hypersurfaces quartiques de dimension 3: non-rationalité stable”, Ann. sci. Éc. Norm. Supér. Sér. 4, 49:2 (2016), 371–397 | MR | Zbl

[10] Conway J. H., Curtis R. T., Norton S. P., Parker R. A., Wilson R. A., Atlas of finite groups: Maximal subgroups and ordinary characters for simple groups, Clarendon Press, Oxford, 1985 | MR | Zbl

[11] Cynk S., “Defect of a nodal hypersurface”, Manuscr. math., 104:3 (2001), 325–331 | DOI | MR | Zbl

[12] Feit W., “The current situation in the theory of finite simple groups”, Actes Congr. int. math. (Nice, 1970), v. 1, Gauthier-Villars, Paris, 1971, 55–93 | MR

[13] Gorchinskii S. O., Shramov K. A., Nerazvetvlennaya gruppa Brauera i ee prilozheniya, E-print, 2015, arXiv: 1512.00874[math.AG]

[14] Grinenko M. M., “Biratsionalnye avtomorfizmy trekhmernoi dvoinoi kvadriki s prosteishei osobennostyu”, Mat. sb., 189:1 (1998), 101–118 | DOI | MR | Zbl

[15] Grinenko M. M., “Biratsionalnye avtomorfizmy trekhmernogo dvoinogo konusa”, Mat. sb., 189:7 (1998), 37–52 | DOI | MR | Zbl

[16] Hassett B., Tschinkel Yu., On stable rationality of Fano threefolds and del Pezzo fibrations, E-print, 2016, arXiv: 1601.07074[math.AG]

[17] Iliev A., Katzakov L., Przyjalkowski V., “Double solids, categories and non-rationality”, Proc. Edinburgh Math. Soc. Ser. 2, 57:1 (2014), 145–173 | DOI | MR | Zbl

[18] Iskovskikh V. A., Prokhorov Yu. G., Fano varieties, Encycl. Math. Sci., 47, Springer, Berlin, 1999 | MR | Zbl

[19] Iskovskikh V. A., Pukhlikov A. V., “Biratsionalnye avtomorfizmy mnogomernykh algebraicheskikh mnogoobrazii”, Algebraicheskaya geometriya – 1, Itogi nauki i tekhniki. Sovr. matematika i ee pril. Tematich. obzory, 19, VINITI, M., 2001, 5–139 | MR | Zbl

[20] Klein F., “Ueber die Transformation siebenter Ordnung der elliptischen Functionen”, Math. Ann., 14 (1879), 428–471 | DOI | MR

[21] Kuznetsov A. G., “O mnogoobraziyakh Kyukhle s chislom Pikara, bolshim 1”, Izv. RAN. Ser. mat., 79:4 (2015), 57–70 | DOI | MR | Zbl

[22] Pettersen K., On nodal determinantal quartic hypersurfaces in $\mathbb P^4$, PhD Thesis, Univ. Oslo, Oslo, 1998

[23] Prokhorov Yu., “Simple finite subgroups of the Cremona group of rank 3”, J. Algebr. Geom., 21:3 (2012), 563–600 | DOI | MR | Zbl

[24] Prokhorov Yu. G., “O trekhmernykh $G$-mnogoobraziyakh Fano”, Izv. RAN. Ser. mat., 79:4 (2015), 159–174 | DOI | MR | Zbl

[25] Prokhorov Yu. G., “Osobye mnogoobraziya Fano roda 12”, Mat. sb., 207:7 (2016), 101–130 | DOI | MR

[26] Prokhorov Yu. G., “Trekhmernye mnogoobraziya $\mathbb Q$-Fano indeksa 7”, Tr. MIAN, 294, 2016, 152–166 | DOI

[27] Pukhlikov A. V., “Biratsionalnye avtomorfizmy dvoinogo prostranstva i dvoinoi kvadriki”, Izv. AN SSSR. Ser. mat., 52:1 (1988), 229–239 | MR | Zbl

[28] Schreieder S., Tasin L., A very general quartic or quintic fivefold is not stably rational, E-print, 2015, arXiv: 1510.02011v2[math.AG]

[29] Shramov K. A., “O biratsionalnoi zhestkosti i $\mathbb Q$-faktorialnosti osobogo dvoinogo nakrytiya kvadriki s vetvleniem v divizore stepeni 4”, Mat. zametki, 84:2 (2008), 300–311 | DOI | MR | Zbl

[30] Todd J. A., “Configurations defined by six lines in space of three dimensions”, Proc. Cambridge Philos. Soc., 29 (1933), 52–68 | DOI | Zbl

[31] Todd J. A., “A note on two special primals in four dimensions”, Q. J. Math., 6 (1935), 129–136 | DOI | Zbl

[32] Todd J. A., “On a quartic primal with forty-five nodes, in space of four dimensions”, Q. J. Math., 7 (1936), 168–174 | DOI | Zbl

[33] Voisin C., Hodge theory and complex algebraic geometry, v. I, Cambridge Stud. Adv. Math., 76, Cambridge Univ. Press, Cambridge, 2007 | MR | Zbl

[34] Voisin C., “Unirational threefolds with no universal codimension 2 cycle”, Invent. math., 201:1 (2015), 207–237 | DOI | MR | Zbl