Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2016_294_a5, author = {A. A. Kuleshov}, title = {On some properties of smooth sums of ridge functions}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {99--104}, publisher = {mathdoc}, volume = {294}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2016_294_a5/} }
A. A. Kuleshov. On some properties of smooth sums of ridge functions. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Modern problems of mathematics, mechanics, and mathematical physics. II, Tome 294 (2016), pp. 99-104. http://geodesic.mathdoc.fr/item/TM_2016_294_a5/
[1] Aliev R. A., Ismailov V. E., “On a smoothness problem in ridge function representation”, Adv. Appl. Math., 73 (2016), 154–169 | DOI | MR | Zbl
[2] Braess D., Pinkus A., “Interpolation by ridge functions”, J. Approx. Theory, 73 (1993), 218–236 | DOI | MR | Zbl
[3] de Bruijn N. G., “Functions whose differences belong to a given class”, Nieuw Arch. Wiskd. Ser. 2, 23 (1951), 194–218 | MR | Zbl
[4] Buhmann M. D., Pinkus A., “Identifying linear combinations of ridge functions”, Adv. Appl. Math., 22:1 (1999), 103–118 | DOI | MR | Zbl
[5] Golovko A. Yu., “Additivnye i multiplikativnye anizotropnye otsenki integralnykh norm differentsiruemykh funktsii na neregulyarnykh oblastyakh”, Tr. MIAN, 290, 2015, 293–303 | DOI | MR | Zbl
[6] Khavinson S. Ya., “Chebyshevskaya teorema dlya priblizheniya funktsii dvukh peremennykh summami $\varphi(x)+\psi(y)$”, Izv. AN SSSR. Ser. mat., 33:3 (1969), 650–666 | MR | Zbl
[7] Herrlich H., Axiom of choice, Lect. Notes Math., 1876, Springer, Berlin, 2006 | MR | Zbl
[8] Ismailov V. E., Pinkus A., “Interpolation on lines by ridge functions”, J. Approx. Theory, 175 (2013), 91–113 | DOI | MR | Zbl
[9] Konyagin S. V., Kuleshov A. A., “O nepreryvnosti konechnykh summ ridzh-funktsii”, Mat. zametki, 98:2 (2015), 308–309 | DOI | MR | Zbl
[10] Konyagin S. V., Kuleshov A. A., “O nekotorykh svoistvakh konechnykh summ ridzh-funktsii, opredelennykh na vypuklykh podmnozhestvakh $\mathbb R^n$”, Tr. MIAN, 293, 2016, 193–200 | DOI
[11] Maiorov V. E., “On best approximation by ridge functions”, J. Approx. Theory, 99 (1999), 68–94 | DOI | MR | Zbl
[12] Ofman Yu. P., “O nailuchshem priblizhenii funktsii dvukh peremennykh funktsiyami vida $\varphi(x)+\psi(y)$”, Izv. AN SSSR. Ser. mat., 25:2 (1961), 239–252 | MR | Zbl
[13] Pinkus A., Ridge functions, Cambridge Tracts Math., 205, Cambridge Univ. Press, Cambridge, 2015 | Zbl
[14] Sun X., Cheney E. W., “The fundamentality of sets of ridge functions”, Aequationes math., 44 (1992), 226–235 | DOI | MR | Zbl
[15] Tyulenev A. I., “Traces of weighted Sobolev spaces with Muckenhoupt weight. The case $p=1$”, Nonlinear Anal. Theory Methods. Appl., 128 (2015), 248–272 | DOI | MR | Zbl
[16] Vasileva A. A., “Entropiinye chisla operatorov vlozheniya vesovykh prostranstv Soboleva”, Mat. zametki, 98:6 (2015), 937–940 | DOI | MR | Zbl
[17] Vasileva A. A., “Poperechniki vesovykh klassov Soboleva na oblasti s pikom”, Mat. sb., 206:10 (2015), 37–70 | DOI | MR | Zbl