On some properties of smooth sums of ridge functions
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Modern problems of mathematics, mechanics, and mathematical physics. II, Tome 294 (2016), pp. 99-104.

Voir la notice de l'article provenant de la source Math-Net.Ru

The following problem is studied: If a finite sum of ridge functions defined on an open subset of $\mathbb R^n$ belongs to some smoothness class, can one represent this sum as a sum of ridge functions (with the same set of directions) each of which belongs to the same smoothness class as the whole sum? It is shown that when the sum contains $m$ terms and there are $m-1$ linearly independent directions among $m$ linearly dependent ones, such a representation exists.
@article{TM_2016_294_a5,
     author = {A. A. Kuleshov},
     title = {On some properties of smooth sums of ridge functions},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {99--104},
     publisher = {mathdoc},
     volume = {294},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2016_294_a5/}
}
TY  - JOUR
AU  - A. A. Kuleshov
TI  - On some properties of smooth sums of ridge functions
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2016
SP  - 99
EP  - 104
VL  - 294
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2016_294_a5/
LA  - ru
ID  - TM_2016_294_a5
ER  - 
%0 Journal Article
%A A. A. Kuleshov
%T On some properties of smooth sums of ridge functions
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2016
%P 99-104
%V 294
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2016_294_a5/
%G ru
%F TM_2016_294_a5
A. A. Kuleshov. On some properties of smooth sums of ridge functions. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Modern problems of mathematics, mechanics, and mathematical physics. II, Tome 294 (2016), pp. 99-104. http://geodesic.mathdoc.fr/item/TM_2016_294_a5/

[1] Aliev R. A., Ismailov V. E., “On a smoothness problem in ridge function representation”, Adv. Appl. Math., 73 (2016), 154–169 | DOI | MR | Zbl

[2] Braess D., Pinkus A., “Interpolation by ridge functions”, J. Approx. Theory, 73 (1993), 218–236 | DOI | MR | Zbl

[3] de Bruijn N. G., “Functions whose differences belong to a given class”, Nieuw Arch. Wiskd. Ser. 2, 23 (1951), 194–218 | MR | Zbl

[4] Buhmann M. D., Pinkus A., “Identifying linear combinations of ridge functions”, Adv. Appl. Math., 22:1 (1999), 103–118 | DOI | MR | Zbl

[5] Golovko A. Yu., “Additivnye i multiplikativnye anizotropnye otsenki integralnykh norm differentsiruemykh funktsii na neregulyarnykh oblastyakh”, Tr. MIAN, 290, 2015, 293–303 | DOI | MR | Zbl

[6] Khavinson S. Ya., “Chebyshevskaya teorema dlya priblizheniya funktsii dvukh peremennykh summami $\varphi(x)+\psi(y)$”, Izv. AN SSSR. Ser. mat., 33:3 (1969), 650–666 | MR | Zbl

[7] Herrlich H., Axiom of choice, Lect. Notes Math., 1876, Springer, Berlin, 2006 | MR | Zbl

[8] Ismailov V. E., Pinkus A., “Interpolation on lines by ridge functions”, J. Approx. Theory, 175 (2013), 91–113 | DOI | MR | Zbl

[9] Konyagin S. V., Kuleshov A. A., “O nepreryvnosti konechnykh summ ridzh-funktsii”, Mat. zametki, 98:2 (2015), 308–309 | DOI | MR | Zbl

[10] Konyagin S. V., Kuleshov A. A., “O nekotorykh svoistvakh konechnykh summ ridzh-funktsii, opredelennykh na vypuklykh podmnozhestvakh $\mathbb R^n$”, Tr. MIAN, 293, 2016, 193–200 | DOI

[11] Maiorov V. E., “On best approximation by ridge functions”, J. Approx. Theory, 99 (1999), 68–94 | DOI | MR | Zbl

[12] Ofman Yu. P., “O nailuchshem priblizhenii funktsii dvukh peremennykh funktsiyami vida $\varphi(x)+\psi(y)$”, Izv. AN SSSR. Ser. mat., 25:2 (1961), 239–252 | MR | Zbl

[13] Pinkus A., Ridge functions, Cambridge Tracts Math., 205, Cambridge Univ. Press, Cambridge, 2015 | Zbl

[14] Sun X., Cheney E. W., “The fundamentality of sets of ridge functions”, Aequationes math., 44 (1992), 226–235 | DOI | MR | Zbl

[15] Tyulenev A. I., “Traces of weighted Sobolev spaces with Muckenhoupt weight. The case $p=1$”, Nonlinear Anal. Theory Methods. Appl., 128 (2015), 248–272 | DOI | MR | Zbl

[16] Vasileva A. A., “Entropiinye chisla operatorov vlozheniya vesovykh prostranstv Soboleva”, Mat. zametki, 98:6 (2015), 937–940 | DOI | MR | Zbl

[17] Vasileva A. A., “Poperechniki vesovykh klassov Soboleva na oblasti s pikom”, Mat. sb., 206:10 (2015), 37–70 | DOI | MR | Zbl