On upper bounds in the Fr\"ohlich polaron model
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Modern problems of mathematics, mechanics, and mathematical physics. II, Tome 294 (2016), pp. 293-299.

Voir la notice de l'article provenant de la source Math-Net.Ru

We show that a sequence of improving upper bounds to the ground state energy of the quantized Fröhlich polaron model can be obtained in a regular way by means of combining a variational method originated from the theory of coherent states with a generalized variational approach in quantum mechanics. Due to their variational nature, these bounds hold for arbitrary strength of the electron-phonon interaction.
@article{TM_2016_294_a17,
     author = {N. N. Bogolyubov Jr. and A. V. Soldatov},
     title = {On upper bounds in the {Fr\"ohlich} polaron model},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {293--299},
     publisher = {mathdoc},
     volume = {294},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2016_294_a17/}
}
TY  - JOUR
AU  - N. N. Bogolyubov Jr.
AU  - A. V. Soldatov
TI  - On upper bounds in the Fr\"ohlich polaron model
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2016
SP  - 293
EP  - 299
VL  - 294
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2016_294_a17/
LA  - ru
ID  - TM_2016_294_a17
ER  - 
%0 Journal Article
%A N. N. Bogolyubov Jr.
%A A. V. Soldatov
%T On upper bounds in the Fr\"ohlich polaron model
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2016
%P 293-299
%V 294
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2016_294_a17/
%G ru
%F TM_2016_294_a17
N. N. Bogolyubov Jr.; A. V. Soldatov. On upper bounds in the Fr\"ohlich polaron model. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Modern problems of mathematics, mechanics, and mathematical physics. II, Tome 294 (2016), pp. 293-299. http://geodesic.mathdoc.fr/item/TM_2016_294_a17/

[1] Fröhlich H., “Electrons in lattice fields”, Adv. Phys., 3:11 (1954), 325–361 | DOI | Zbl

[2] Appel J., “Polarons”, Solid State Phys., 21 (1968), 193–391

[3] Bogolubov N. N., Bogolubov N. N. (Jr.), Aspects of the polaron theory, JINR Communs. P-17-81-65, Joint Inst. Nucl. Res., Dubna, 1981

[4] Bogolubov N. N., Bogolubov N. N. (Jr.), Aspects of polaron theory: Equilibrium and nonequilibrium problems, World Scientific, Hackensack, NJ, 2008 | Zbl

[5] J. T. Devreese (Ed.), Polarons in ionic crystals and polar semiconductors, North-Holland, Amsterdam, 1972

[6] J. T. Devreese, V. E. van Doren (Eds), Linear and nonlinear electron transport in solids, Plenum, New York, 1976

[7] Devreese J. T., “Polarons”, Encyclopedia of applied physics, 14, VCH, Weinheim, 1996, 383–413

[8] Perelomov A., Generalized coherent states and their applications, Springer, Berlin, 1986 | MR | Zbl

[9] Bogolyubov N. N. (Jr.), Soldatov A. V., “Wick's symbol approach to the Fröhlich polaron problem”, Ukr. J. Phys., 54:8–9 (2009), 873–880

[10] Feynman R. P., “Slow electrons in a polar crystal”, Phys. Rev., 97 (1955), 660–665 | DOI | Zbl

[11] Feynman R. P., Statistical mechanics: A set of lectures, Benjamin, Reading, MA, 1972 | MR

[12] Soldatov A. V., “Generalized variational principle in quantum mechanics”, Int. J. Mod. Phys. B, 9:22 (1995), 2899–2936 | DOI | MR