The Hess--Appelrot system and its nonholonomic analogs
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Modern problems of mathematics, mechanics, and mathematical physics. II, Tome 294 (2016), pp. 268-292

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is concerned with the nonholonomic Suslov problem and its generalization proposed by Chaplygin. The issue of the existence of an invariant measure with singular density (having singularities at some points of the phase space) is discussed.
@article{TM_2016_294_a16,
     author = {I. A. Bizyaev and A. V. Borisov and I. S. Mamaev},
     title = {The {Hess--Appelrot} system and its nonholonomic analogs},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {268--292},
     publisher = {mathdoc},
     volume = {294},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2016_294_a16/}
}
TY  - JOUR
AU  - I. A. Bizyaev
AU  - A. V. Borisov
AU  - I. S. Mamaev
TI  - The Hess--Appelrot system and its nonholonomic analogs
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2016
SP  - 268
EP  - 292
VL  - 294
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2016_294_a16/
LA  - ru
ID  - TM_2016_294_a16
ER  - 
%0 Journal Article
%A I. A. Bizyaev
%A A. V. Borisov
%A I. S. Mamaev
%T The Hess--Appelrot system and its nonholonomic analogs
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2016
%P 268-292
%V 294
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2016_294_a16/
%G ru
%F TM_2016_294_a16
I. A. Bizyaev; A. V. Borisov; I. S. Mamaev. The Hess--Appelrot system and its nonholonomic analogs. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Modern problems of mathematics, mechanics, and mathematical physics. II, Tome 294 (2016), pp. 268-292. http://geodesic.mathdoc.fr/item/TM_2016_294_a16/