Uniqueness theorem for locally antipodal Delaunay sets
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Modern problems of mathematics, mechanics, and mathematical physics. II, Tome 294 (2016), pp. 230-236

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove theorems on locally antipodal Delaunay sets. The main result is the proof of a uniqueness theorem for locally antipodal Delaunay sets with a given $2R$-cluster. This theorem implies, in particular, a new proof of a theorem stating that a locally antipodal Delaunay set all of whose $2R$-clusters are equivalent is a regular system, i.e., a Delaunay set on which a crystallographic group acts transitively.
@article{TM_2016_294_a12,
     author = {N. P. Dolbilin and A. N. Magazinov},
     title = {Uniqueness theorem for locally antipodal {Delaunay} sets},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {230--236},
     publisher = {mathdoc},
     volume = {294},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2016_294_a12/}
}
TY  - JOUR
AU  - N. P. Dolbilin
AU  - A. N. Magazinov
TI  - Uniqueness theorem for locally antipodal Delaunay sets
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2016
SP  - 230
EP  - 236
VL  - 294
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2016_294_a12/
LA  - ru
ID  - TM_2016_294_a12
ER  - 
%0 Journal Article
%A N. P. Dolbilin
%A A. N. Magazinov
%T Uniqueness theorem for locally antipodal Delaunay sets
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2016
%P 230-236
%V 294
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2016_294_a12/
%G ru
%F TM_2016_294_a12
N. P. Dolbilin; A. N. Magazinov. Uniqueness theorem for locally antipodal Delaunay sets. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Modern problems of mathematics, mechanics, and mathematical physics. II, Tome 294 (2016), pp. 230-236. http://geodesic.mathdoc.fr/item/TM_2016_294_a12/