Elliptic function of level ~$4$
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Modern problems of mathematics, mechanics, and mathematical physics. II, Tome 294 (2016), pp. 216-229.

Voir la notice de l'article provenant de la source Math-Net.Ru

The article is devoted to the theory of elliptic functions of level $n$. An elliptic function of level $n$ determines a Hirzebruch genus called an elliptic genus of level $n$. Elliptic functions of level $n$ are also of interest because they are solutions of the Hirzebruch functional equations. The elliptic function of level $2$ is the Jacobi elliptic sine function, which determines the famous Ochanine–Witten genus. It is the exponential of the universal formal group of the form $F(u,v)=(u^2-v^2)/(uB(v)-vB(u))$, $B(0)=1$. The elliptic function of level $3$ is the exponential of the universal formal group of the form $F(u,v)=(u^2A(v)-v^2 A(u))/(uA(v)^2-vA(u)^2)$, $A(0)=1$, $A''(0)=0$. In the present study we show that the elliptic function of level $4$ is the exponential of the universal formal group of the form $F(u,v)=(u^2A(v)-v^2A(u))/(uB(v)-vB(u))$, where $A(0)=B(0)=1$ and for $B'(0)=A''(0)=0$, $A'(0)=A_1$, and $B''(0)=2B_2$ the following relation holds: $(2B(u)+3A_1u)^2=4A(u)^3-(3A_1^2-8B_2)u^2A(u)^2$. To prove this result, we express the elliptic function of level $4$ in terms of the Weierstrass elliptic functions.
@article{TM_2016_294_a11,
     author = {E. Yu. Bunkova},
     title = {Elliptic function of level ~$4$},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {216--229},
     publisher = {mathdoc},
     volume = {294},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2016_294_a11/}
}
TY  - JOUR
AU  - E. Yu. Bunkova
TI  - Elliptic function of level ~$4$
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2016
SP  - 216
EP  - 229
VL  - 294
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2016_294_a11/
LA  - ru
ID  - TM_2016_294_a11
ER  - 
%0 Journal Article
%A E. Yu. Bunkova
%T Elliptic function of level ~$4$
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2016
%P 216-229
%V 294
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2016_294_a11/
%G ru
%F TM_2016_294_a11
E. Yu. Bunkova. Elliptic function of level ~$4$. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Modern problems of mathematics, mechanics, and mathematical physics. II, Tome 294 (2016), pp. 216-229. http://geodesic.mathdoc.fr/item/TM_2016_294_a11/

[1] Bukhshtaber V. M., “Funktsionalnye uravneniya, assotsiirovannye s teoremami slozheniya dlya ellipticheskikh funktsii, i dvuznachnye algebraicheskie gruppy”, UMN, 45:3 (1990), 185–186 | MR | Zbl

[2] Bukhshtaber V. M., Bunkova E. Yu., “Formalnye gruppy Krichevera”, Funkts. analiz i ego pril., 45:2 (2011), 23–44 | DOI | MR | Zbl

[3] Bukhshtaber V. M., Bunkova E. Yu., “Universalnaya formalnaya gruppa, opredelyayuschaya ellipticheskuyu funktsiyu urovnya $3$”, Chebyshev. sb., 16:2 (2015), 66–78

[4] Bukhshtaber V. M., Bunkova E. Yu., “Mnogoobraziya reshenii funktsionalnykh uravnenii Khirtsebrukha”, Tr. MIAN, 290, 2015, 136–148 | DOI | MR

[5] Bukhshtaber V. M., Netai E. Yu., “$\mathbb CP(2)$-multiplikativnye rody Khirtsebrukha i ellipticheskie kogomologii”, UMN, 69:4 (2014), 181–182 | DOI | MR | Zbl

[6] Bukhshtaber V. M., Netai I. V., “Funktsionalnoe uravnenie Khirtsebrukha i ellipticheskie funktsii urovnya $d$”, Funkts. analiz i ego pril., 49:4 (2015), 1–17 | DOI | MR

[7] Buchstaber V. M., Panov T. E., Toric topology, Math. Surv. Monogr., 204, Amer. Math. Soc., Providence, RI, 2015 | DOI | MR | Zbl

[8] Bukhshtaber V. M., Ustinov A. V., “Koltsa koeffitsientov formalnykh grupp”, Mat. sb., 206:11 (2015), 19–60 | DOI | MR

[9] Bunkova E. Yu., Bukhshtaber V. M., Ustinov A. V., “Koltsa koeffitsientov formalnykh grupp Teita, zadayuschikh rody Krichevera”, Tr. MIAN, 292, 2016, 43–68 | DOI | Zbl

[10] Hazewinkel M., Formal groups and applications, Acad. Press, New York, 1978 | MR | Zbl

[11] Hirzebruch F., Elliptic genera of level $N$ for complex manifolds, Preprint 88-24, Max-Planck-Inst. Math., Bonn, 1988 | MR

[12] Hirzebruch F., Berger T., Jung R., Manifolds and modular forms, Aspects Math., E20, Vieweg, Braunschweig, 1992 | DOI | MR | Zbl

[13] Krichever I. M., “Obobschennye ellipticheskie rody i funktsii Beikera–Akhiezera”, Mat. zametki, 47:2 (1990), 34–45 | MR | Zbl

[14] Leng S., Ellipticheskie funktsii, Nauka, M., 1984 | MR

[15] Ochanine S., “Sur les genres multiplicatifs définis par des intégrales elliptiques”, Topology, 26:2 (1987), 143–151 | DOI | MR | Zbl

[16] Uitteker E. T., Vatson Dzh. N., Kurs sovremennogo analiza. Ch. 2: Transtsendentnye funktsii, URSS, M., 2010