Polynomial dynamical systems and the Korteweg–de Vries equation
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Modern problems of mathematics, mechanics, and mathematical physics. II, Tome 294 (2016), pp. 191-215 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We explicitly construct polynomial vector fields $\mathcal L_k$, $k=0,1,2,3,4,6$, on the complex linear space $\mathbb C^6$ with coordinates $X=(x_2,x_3,x_4)$ and $Z=(z_4,z_5,z_6)$. The fields $\mathcal L_k$ are linearly independent outside their discriminant variety $\Delta\subset\mathbb C^6$ and are tangent to this variety. We describe a polynomial Lie algebra of the fields $\mathcal L_k$ and the structure of the polynomial ring $\mathbb C[X,Z]$ as a graded module with two generators $x_2$ and $z_4$ over this algebra. The fields $\mathcal L_1$ and $\mathcal L_3$ commute. Any polynomial $P(X,Z)\in\mathbb C[X,Z]$ determines a hyperelliptic function $P(X,Z)(u_1,u_3)$ of genus $2$, where $u_1$ and $u_3$ are the coordinates of trajectories of the fields $\mathcal L_1$ and $\mathcal L_3$. The function $2x_2(u_1,u_3)$ is a two-zone solution of the Korteweg–de Vries hierarchy, and $\partial z_4(u_1,u_3)/\partial u_1=\partial x_2(u_1,u_3)/\partial u_3$.
@article{TM_2016_294_a10,
     author = {V. M. Buchstaber},
     title = {Polynomial dynamical systems and the {Korteweg{\textendash}de} {Vries} equation},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {191--215},
     year = {2016},
     volume = {294},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2016_294_a10/}
}
TY  - JOUR
AU  - V. M. Buchstaber
TI  - Polynomial dynamical systems and the Korteweg–de Vries equation
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2016
SP  - 191
EP  - 215
VL  - 294
UR  - http://geodesic.mathdoc.fr/item/TM_2016_294_a10/
LA  - ru
ID  - TM_2016_294_a10
ER  - 
%0 Journal Article
%A V. M. Buchstaber
%T Polynomial dynamical systems and the Korteweg–de Vries equation
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2016
%P 191-215
%V 294
%U http://geodesic.mathdoc.fr/item/TM_2016_294_a10/
%G ru
%F TM_2016_294_a10
V. M. Buchstaber. Polynomial dynamical systems and the Korteweg–de Vries equation. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Modern problems of mathematics, mechanics, and mathematical physics. II, Tome 294 (2016), pp. 191-215. http://geodesic.mathdoc.fr/item/TM_2016_294_a10/

[1] Ablowitz M. J., Chakravarty S., Halburd R., “The generalized Chazy equation from the self-duality equations”, Stud. Appl. Math., 103:1 (1999), 75–88 | DOI | MR | Zbl

[2] Baker H. F., “On the hyperelliptic sigma functions”, Amer. J. Math., 20 (1898), 301–384 | DOI | MR | Zbl

[3] Baker H. F., “On a system of differential equations leading to periodic functions”, Acta math., 27 (1903), 135–156 | DOI | MR | Zbl

[4] Baker H. F., An introduction to the theory of multiply periodic functions, Univ. Press, Cambridge, 1907 | Zbl

[5] Buchstaber V. M., Enolskiĭ V. Z., Leĭkin D. V., “Hyperelliptic Kleinian functions and applications”, Solitons, geometry and topology: On the crossroad, AMS Transl. Ser. 2, 179, Amer. Math. Soc., Providence, RI, 1997, 1–33 | MR | Zbl

[6] Buchstaber V. M., Enolskii V. Z., Leykin D. V., “Kleinian functions, hyperelliptic Jacobians and applications”, Rev. Math. Math. Phys., 10:2 (1997), 3–120 | Zbl

[7] Buchstaber V. M., Enolski V. Z., Leykin D. V., Multi-dimensional sigma-functions, E-print, 2012, arXiv: 1208.0990[math-ph]

[8] Bukhshtaber V. M., Leikin D. V., “Polinomialnye algebry Li”, Funkts. analiz i ego pril., 36:4 (2002), 18–34 | DOI | MR | Zbl

[9] Bukhshtaber V. M., Leikin D. V., “Uravneniya teploprovodnosti v negolonomnom repere”, Funkts. analiz i ego pril., 38:2 (2004), 12–27 | DOI | MR | Zbl

[10] Bukhshtaber V. M., Leikin D. V., “Zakony slozheniya na yakobianakh ploskikh algebraicheskikh krivykh”, Tr. MIAN, 251, 2005, 54–126 | MR | Zbl

[11] Bukhshtaber V. M., Leikin D. V., “Differentsirovanie abelevykh funktsii po parametram”, UMN, 62:4 (2007), 153–154 | DOI | MR | Zbl

[12] Bukhshtaber V. M., Leikin D. V., “Reshenie zadachi differentsirovaniya abelevykh funktsii po parametram dlya semeistv $(n,s)$-krivykh”, Funkts. analiz i ego pril., 42:4 (2008), 24–36 | DOI | MR | Zbl

[13] Bunkova E. Yu., Bukhshtaber V. M., “Polinomialnye dinamicheskie sistemy i obyknovennye differentsialnye uravneniya, assotsiirovannye s uravneniem teploprovodnosti”, Funkts. analiz i ego pril., 46:3 (2012), 16–37 | DOI | MR | Zbl

[14] Dubpovin B. A., Novikov S. P., “Periodicheskaya zadacha dlya uravneniya Kortevega–de Friza i Shturma–Liuvillya. Ikh svyaz s algebraicheskoi geometriei”, DAH SSSR, 219:3 (1974), 531–534

[15] Frobenius F. G., Stickelberger L., “Ueber die Differentiation der elliptischen Functionen nach den Perioden und Invarianten”, J. reine angew. Math., 92 (1882), 311–327 | MR

[16] Gelfand I. M., Dikii L. A., “Asimptotika rezolventy shturm–liuvillevskikh uravnenii i algebra uravnenii Kortevega–de Friza”, UMN, 30:5 (1975), 67–100 | MR | Zbl

[17] Hudson R. W. H. T., Kummer's quartic surface, Cambridge Univ. Press, Cambridge, 1905, 1990 | MR | Zbl

[18] Kudryashov N. A., Analiticheskaya teoriya nelineinykh differentsialnykh uravnenii, Regulyarnaya i khaoticheskaya dinamika, M.–Izhevsk, 2004

[19] Novikov S. P., “Periodicheskaya zadacha dlya uravneniya Kortevega–de Friza. I”, Funkts. analiz i ego pril., 8:3 (1974), 54–66 | MR | Zbl

[20] Sheinman O. K., “Ierarkhii konechnomernykh uravnenii Laksa so spektralnym parametrom na rimanovoi poverkhnosti i poluprostye algebry Li”, TMF, 185:3 (2015), 527–544 | DOI | MR | Zbl

[21] Sheinman O. K., “Poluprostye algebry Li i gamiltonova teoriya konechnomernykh uravnenii Laksa so spektralnym parametrom na rimanovoi poverkhnosti”, Tr. MIAN, 290, 2015, 191–201 ; “Исправление”, Тр. МИАН, 294, 2016, 325–327 | DOI | MR | Zbl

[22] Sheinman O. K., “Algebry operatorov Laksa i integriruemye sistemy”, UMN, 71:1 (2016), 117–168 | DOI | MR | Zbl

[23] Weierstrass K., “Zur Theorie der elliptischen Functionen”, v. 2, Mathematische Werke, Mayer Müller, Berlin, 1895, 245–255

[24] Weierstrass K., “Die Abelschen Functionen”, v. 4, Mathematische Werke, Mayer Müller, Berlin, 1902, 439–624

[25] Uitteker E. T., Vatson Dzh. N., Kurs sovremennogo analiza. Ch. 2: Transtsendentnye funktsii, Fizmatlit, M., 1963