Polynomial dynamical systems and the Korteweg--de Vries equation
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Modern problems of mathematics, mechanics, and mathematical physics. II, Tome 294 (2016), pp. 191-215.

Voir la notice de l'article provenant de la source Math-Net.Ru

We explicitly construct polynomial vector fields $\mathcal L_k$, $k=0,1,2,3,4,6$, on the complex linear space $\mathbb C^6$ with coordinates $X=(x_2,x_3,x_4)$ and $Z=(z_4,z_5,z_6)$. The fields $\mathcal L_k$ are linearly independent outside their discriminant variety $\Delta\subset\mathbb C^6$ and are tangent to this variety. We describe a polynomial Lie algebra of the fields $\mathcal L_k$ and the structure of the polynomial ring $\mathbb C[X,Z]$ as a graded module with two generators $x_2$ and $z_4$ over this algebra. The fields $\mathcal L_1$ and $\mathcal L_3$ commute. Any polynomial $P(X,Z)\in\mathbb C[X,Z]$ determines a hyperelliptic function $P(X,Z)(u_1,u_3)$ of genus $2$, where $u_1$ and $u_3$ are the coordinates of trajectories of the fields $\mathcal L_1$ and $\mathcal L_3$. The function $2x_2(u_1,u_3)$ is a two-zone solution of the Korteweg–de Vries hierarchy, and $\partial z_4(u_1,u_3)/\partial u_1=\partial x_2(u_1,u_3)/\partial u_3$.
@article{TM_2016_294_a10,
     author = {V. M. Buchstaber},
     title = {Polynomial dynamical systems and the {Korteweg--de} {Vries} equation},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {191--215},
     publisher = {mathdoc},
     volume = {294},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2016_294_a10/}
}
TY  - JOUR
AU  - V. M. Buchstaber
TI  - Polynomial dynamical systems and the Korteweg--de Vries equation
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2016
SP  - 191
EP  - 215
VL  - 294
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2016_294_a10/
LA  - ru
ID  - TM_2016_294_a10
ER  - 
%0 Journal Article
%A V. M. Buchstaber
%T Polynomial dynamical systems and the Korteweg--de Vries equation
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2016
%P 191-215
%V 294
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2016_294_a10/
%G ru
%F TM_2016_294_a10
V. M. Buchstaber. Polynomial dynamical systems and the Korteweg--de Vries equation. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Modern problems of mathematics, mechanics, and mathematical physics. II, Tome 294 (2016), pp. 191-215. http://geodesic.mathdoc.fr/item/TM_2016_294_a10/

[1] Ablowitz M. J., Chakravarty S., Halburd R., “The generalized Chazy equation from the self-duality equations”, Stud. Appl. Math., 103:1 (1999), 75–88 | DOI | MR | Zbl

[2] Baker H. F., “On the hyperelliptic sigma functions”, Amer. J. Math., 20 (1898), 301–384 | DOI | MR | Zbl

[3] Baker H. F., “On a system of differential equations leading to periodic functions”, Acta math., 27 (1903), 135–156 | DOI | MR | Zbl

[4] Baker H. F., An introduction to the theory of multiply periodic functions, Univ. Press, Cambridge, 1907 | Zbl

[5] Buchstaber V. M., Enolskiĭ V. Z., Leĭkin D. V., “Hyperelliptic Kleinian functions and applications”, Solitons, geometry and topology: On the crossroad, AMS Transl. Ser. 2, 179, Amer. Math. Soc., Providence, RI, 1997, 1–33 | MR | Zbl

[6] Buchstaber V. M., Enolskii V. Z., Leykin D. V., “Kleinian functions, hyperelliptic Jacobians and applications”, Rev. Math. Math. Phys., 10:2 (1997), 3–120 | Zbl

[7] Buchstaber V. M., Enolski V. Z., Leykin D. V., Multi-dimensional sigma-functions, E-print, 2012, arXiv: 1208.0990[math-ph]

[8] Bukhshtaber V. M., Leikin D. V., “Polinomialnye algebry Li”, Funkts. analiz i ego pril., 36:4 (2002), 18–34 | DOI | MR | Zbl

[9] Bukhshtaber V. M., Leikin D. V., “Uravneniya teploprovodnosti v negolonomnom repere”, Funkts. analiz i ego pril., 38:2 (2004), 12–27 | DOI | MR | Zbl

[10] Bukhshtaber V. M., Leikin D. V., “Zakony slozheniya na yakobianakh ploskikh algebraicheskikh krivykh”, Tr. MIAN, 251, 2005, 54–126 | MR | Zbl

[11] Bukhshtaber V. M., Leikin D. V., “Differentsirovanie abelevykh funktsii po parametram”, UMN, 62:4 (2007), 153–154 | DOI | MR | Zbl

[12] Bukhshtaber V. M., Leikin D. V., “Reshenie zadachi differentsirovaniya abelevykh funktsii po parametram dlya semeistv $(n,s)$-krivykh”, Funkts. analiz i ego pril., 42:4 (2008), 24–36 | DOI | MR | Zbl

[13] Bunkova E. Yu., Bukhshtaber V. M., “Polinomialnye dinamicheskie sistemy i obyknovennye differentsialnye uravneniya, assotsiirovannye s uravneniem teploprovodnosti”, Funkts. analiz i ego pril., 46:3 (2012), 16–37 | DOI | MR | Zbl

[14] Dubpovin B. A., Novikov S. P., “Periodicheskaya zadacha dlya uravneniya Kortevega–de Friza i Shturma–Liuvillya. Ikh svyaz s algebraicheskoi geometriei”, DAH SSSR, 219:3 (1974), 531–534

[15] Frobenius F. G., Stickelberger L., “Ueber die Differentiation der elliptischen Functionen nach den Perioden und Invarianten”, J. reine angew. Math., 92 (1882), 311–327 | MR

[16] Gelfand I. M., Dikii L. A., “Asimptotika rezolventy shturm–liuvillevskikh uravnenii i algebra uravnenii Kortevega–de Friza”, UMN, 30:5 (1975), 67–100 | MR | Zbl

[17] Hudson R. W. H. T., Kummer's quartic surface, Cambridge Univ. Press, Cambridge, 1905, 1990 | MR | Zbl

[18] Kudryashov N. A., Analiticheskaya teoriya nelineinykh differentsialnykh uravnenii, Regulyarnaya i khaoticheskaya dinamika, M.–Izhevsk, 2004

[19] Novikov S. P., “Periodicheskaya zadacha dlya uravneniya Kortevega–de Friza. I”, Funkts. analiz i ego pril., 8:3 (1974), 54–66 | MR | Zbl

[20] Sheinman O. K., “Ierarkhii konechnomernykh uravnenii Laksa so spektralnym parametrom na rimanovoi poverkhnosti i poluprostye algebry Li”, TMF, 185:3 (2015), 527–544 | DOI | MR | Zbl

[21] Sheinman O. K., “Poluprostye algebry Li i gamiltonova teoriya konechnomernykh uravnenii Laksa so spektralnym parametrom na rimanovoi poverkhnosti”, Tr. MIAN, 290, 2015, 191–201 ; “Исправление”, Тр. МИАН, 294, 2016, 325–327 | DOI | MR | Zbl

[22] Sheinman O. K., “Algebry operatorov Laksa i integriruemye sistemy”, UMN, 71:1 (2016), 117–168 | DOI | MR | Zbl

[23] Weierstrass K., “Zur Theorie der elliptischen Functionen”, v. 2, Mathematische Werke, Mayer Müller, Berlin, 1895, 245–255

[24] Weierstrass K., “Die Abelschen Functionen”, v. 4, Mathematische Werke, Mayer Müller, Berlin, 1902, 439–624

[25] Uitteker E. T., Vatson Dzh. N., Kurs sovremennogo analiza. Ch. 2: Transtsendentnye funktsii, Fizmatlit, M., 1963