Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2016_293_a8, author = {V. I. Buslaev}, title = {An analog of {Gonchar's} theorem for the $m$-point version of {Leighton's} conjecture}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {133--145}, publisher = {mathdoc}, volume = {293}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2016_293_a8/} }
TY - JOUR AU - V. I. Buslaev TI - An analog of Gonchar's theorem for the $m$-point version of Leighton's conjecture JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2016 SP - 133 EP - 145 VL - 293 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2016_293_a8/ LA - ru ID - TM_2016_293_a8 ER -
V. I. Buslaev. An analog of Gonchar's theorem for the $m$-point version of Leighton's conjecture. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function spaces, approximation theory, and related problems of mathematical analysis, Tome 293 (2016), pp. 133-145. http://geodesic.mathdoc.fr/item/TM_2016_293_a8/