An analog of Gonchar's theorem for the $m$-point version of Leighton's conjecture
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function spaces, approximation theory, and related problems of mathematical analysis, Tome 293 (2016), pp. 133-145
Voir la notice de l'article provenant de la source Math-Net.Ru
Gonchar's theorem on the validity of Leighton's conjecture for arbitrary nondecreasing sequences of exponents of general $C$-fractions is extended to continued fractions of a more general form.
@article{TM_2016_293_a8,
author = {V. I. Buslaev},
title = {An analog of {Gonchar's} theorem for the $m$-point version of {Leighton's} conjecture},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {133--145},
publisher = {mathdoc},
volume = {293},
year = {2016},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TM_2016_293_a8/}
}
TY - JOUR AU - V. I. Buslaev TI - An analog of Gonchar's theorem for the $m$-point version of Leighton's conjecture JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2016 SP - 133 EP - 145 VL - 293 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2016_293_a8/ LA - ru ID - TM_2016_293_a8 ER -
V. I. Buslaev. An analog of Gonchar's theorem for the $m$-point version of Leighton's conjecture. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function spaces, approximation theory, and related problems of mathematical analysis, Tome 293 (2016), pp. 133-145. http://geodesic.mathdoc.fr/item/TM_2016_293_a8/