Convergence of integrable operators affiliated to a~finite von~Neumann algebra
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function spaces, approximation theory, and related problems of mathematical analysis, Tome 293 (2016), pp. 73-82
Voir la notice de l'article provenant de la source Math-Net.Ru
In the Banach space $L_1(\mathcal M,\tau)$ of operators integrable with respect to a tracial state $\tau$ on a von Neumann algebra $\mathcal M$, convergence is analyzed. A notion of dispersion of operators in $L_2(\mathcal M,\tau)$ is introduced, and its main properties are established. A convergence criterion in $L_2(\mathcal M,\tau)$ in terms of the dispersion is proposed. It is shown that the following conditions for $X\in L_1(\mathcal M,\tau)$ are equivalent: (i) $\tau (X)=0$, and (ii) $\|I+zX\|_1\geq 1$ for all $z\in\mathbb C$. A. R. Padmanabhan's result (1979) on a property of the norm of the space $L_1(\mathcal M,\tau)$ is complemented. The convergence in $L_2(\mathcal M,\tau)$ of the imaginary components of some bounded sequences of operators from $\mathcal M$ is established. Corollaries on the convergence of dispersions are obtained.
@article{TM_2016_293_a4,
author = {A. M. Bikchentaev},
title = {Convergence of integrable operators affiliated to a~finite {von~Neumann} algebra},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {73--82},
publisher = {mathdoc},
volume = {293},
year = {2016},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TM_2016_293_a4/}
}
TY - JOUR AU - A. M. Bikchentaev TI - Convergence of integrable operators affiliated to a~finite von~Neumann algebra JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2016 SP - 73 EP - 82 VL - 293 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2016_293_a4/ LA - ru ID - TM_2016_293_a4 ER -
A. M. Bikchentaev. Convergence of integrable operators affiliated to a~finite von~Neumann algebra. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function spaces, approximation theory, and related problems of mathematical analysis, Tome 293 (2016), pp. 73-82. http://geodesic.mathdoc.fr/item/TM_2016_293_a4/