Convergence of integrable operators affiliated to a~finite von~Neumann algebra
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function spaces, approximation theory, and related problems of mathematical analysis, Tome 293 (2016), pp. 73-82

Voir la notice de l'article provenant de la source Math-Net.Ru

In the Banach space $L_1(\mathcal M,\tau)$ of operators integrable with respect to a tracial state $\tau$ on a von Neumann algebra $\mathcal M$, convergence is analyzed. A notion of dispersion of operators in $L_2(\mathcal M,\tau)$ is introduced, and its main properties are established. A convergence criterion in $L_2(\mathcal M,\tau)$ in terms of the dispersion is proposed. It is shown that the following conditions for $X\in L_1(\mathcal M,\tau)$ are equivalent: (i) $\tau (X)=0$, and (ii) $\|I+zX\|_1\geq 1$ for all $z\in\mathbb C$. A. R. Padmanabhan's result (1979) on a property of the norm of the space $L_1(\mathcal M,\tau)$ is complemented. The convergence in $L_2(\mathcal M,\tau)$ of the imaginary components of some bounded sequences of operators from $\mathcal M$ is established. Corollaries on the convergence of dispersions are obtained.
@article{TM_2016_293_a4,
     author = {A. M. Bikchentaev},
     title = {Convergence of integrable operators affiliated to a~finite {von~Neumann} algebra},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {73--82},
     publisher = {mathdoc},
     volume = {293},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2016_293_a4/}
}
TY  - JOUR
AU  - A. M. Bikchentaev
TI  - Convergence of integrable operators affiliated to a~finite von~Neumann algebra
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2016
SP  - 73
EP  - 82
VL  - 293
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2016_293_a4/
LA  - ru
ID  - TM_2016_293_a4
ER  - 
%0 Journal Article
%A A. M. Bikchentaev
%T Convergence of integrable operators affiliated to a~finite von~Neumann algebra
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2016
%P 73-82
%V 293
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2016_293_a4/
%G ru
%F TM_2016_293_a4
A. M. Bikchentaev. Convergence of integrable operators affiliated to a~finite von~Neumann algebra. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function spaces, approximation theory, and related problems of mathematical analysis, Tome 293 (2016), pp. 73-82. http://geodesic.mathdoc.fr/item/TM_2016_293_a4/