Spaces of functions of positive smoothness on irregular domains
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function spaces, approximation theory, and related problems of mathematical analysis, Tome 293 (2016), pp. 62-72.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is devoted to constructing and studying spaces of functions of positive smoothness on irregular domains of the $n$-dimensional Euclidean space. We prove embedding theorems that connect the spaces introduced with the Sobolev and Lebesgue spaces. The formulations of the theorems depend on geometric parameters of the domain of definition of functions.
@article{TM_2016_293_a3,
     author = {O. V. Besov},
     title = {Spaces of functions of positive smoothness on irregular domains},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {62--72},
     publisher = {mathdoc},
     volume = {293},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2016_293_a3/}
}
TY  - JOUR
AU  - O. V. Besov
TI  - Spaces of functions of positive smoothness on irregular domains
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2016
SP  - 62
EP  - 72
VL  - 293
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2016_293_a3/
LA  - ru
ID  - TM_2016_293_a3
ER  - 
%0 Journal Article
%A O. V. Besov
%T Spaces of functions of positive smoothness on irregular domains
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2016
%P 62-72
%V 293
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2016_293_a3/
%G ru
%F TM_2016_293_a3
O. V. Besov. Spaces of functions of positive smoothness on irregular domains. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function spaces, approximation theory, and related problems of mathematical analysis, Tome 293 (2016), pp. 62-72. http://geodesic.mathdoc.fr/item/TM_2016_293_a3/

[1] Besov O.V., “Teorema vlozheniya Soboleva dlya oblasti s neregulyarnoi granitsei”, Mat. sb., 192:3 (2001), 3–26 | DOI | MR | Zbl

[2] Besov O.V., “Ekvivalentnye normy v prostranstvakh funktsii drobnoi gladkosti na proizvolnoi oblasti”, Mat. zametki, 74:3 (2003), 340–349 | DOI | MR | Zbl

[3] Besov O.V., “Prostranstva funktsii tipa Lizorkina–Tribelya na neregulyarnoi oblasti”, Tr. MIAN, 260 (2008), 32–43 | MR | Zbl

[4] Besov O.V., “Prostranstva funktsii drobnoi gladkosti na neregulyarnoi oblasti”, Tr. MIAN, 269 (2010), 31–51 | MR | Zbl

[5] Besov O.V., “Vlozhenie prostranstva Soboleva i svoistva oblasti”, Mat. zametki, 96:3 (2014), 341–347 | DOI | MR

[6] Besov O.V., “Vlozhenie vesovogo prostranstva Soboleva i svoistva oblasti”, Tr. MIAN, 289 (2015), 107–114 | Zbl

[7] Besov O.V., “Prostranstva funktsii polozhitelnoi gladkosti na neregulyarnykh oblastyakh”, DAN, 466:2 (2016), 133–136 | Zbl

[8] Besov O.V., Ilin V.P., Nikolskii S.M., Integralnye predstavleniya funktsii i teoremy vlozheniya, Nauka, M., 1996 | MR

[9] Kilpeläinen T., Malý J., “Sobolev inequalities on sets with irregular boundaries”, Z. Anal. Anwend., 19:2 (2000), 369–380 | DOI | MR | Zbl

[10] Labutin D.A., “Vlozhenie prostranstv Soboleva na gëlderovykh oblastyakh”, Tr. MIAN, 227 (1999), 170–179 | MR | Zbl